首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2)且,试求: (Ⅰ)二维随机变量(X,Y)的联合概率分布; (Ⅱ)X与Y的相关系数Pxy; (Ⅲ)条件概率P{Y=yj︱X=x1},j=1,2。
设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2)且,试求: (Ⅰ)二维随机变量(X,Y)的联合概率分布; (Ⅱ)X与Y的相关系数Pxy; (Ⅲ)条件概率P{Y=yj︱X=x1},j=1,2。
admin
2018-11-16
56
问题
设离散型二维随机变量(X,Y)的取值为(x
i
,y
j
)(i,j=1,2)且
,试求:
(Ⅰ)二维随机变量(X,Y)的联合概率分布;
(Ⅱ)X与Y的相关系数Pxy;
(Ⅲ)条件概率P{Y=y
j
︱X=x
1
},j=1,2。
选项
答案
依题意,随机变量X与Y的可能取值分别为x
1
,x
2
与y
1
,y
2
且[*],又题设[*],于是有[*],即事件{X= x
1
}与事件{Y=y
1
}相互独立,因而{X=x
1
}的对立事件{X=x
2
}与{Y=y
1
}独立,且{X=x
1
}与{Y=y
1
}的对立事件{Y=y
2
}独立;{X=x
2
}与{Y=y
2
}独立,即X与Y相互独立。 (Ⅰ)因X与Y独立,所以有[*]或[*]。 于是(X,Y)的联合概率分布为[*] (Ⅱ)由(Ⅰ)知X与Y独立,因此它们的相关系数PXY=0。 (Ⅲ)因X与Y独立,所以P{Y=y
j
︱X=x
1
}=P{ Y=y
j
},j=1,2于是有[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/f8W4777K
0
考研数学三
相关试题推荐
求函数y=1n(x+)的反函数.
设二次型2x12+x22+x32+2x1x2+ax2x3的秩为2,则a=________.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设矩阵有一个特征值为3.求可逆矩阵P,使得(AP)T(AP)为对角矩阵.
设X在区间[一2,2]上服从均匀分布,令Y=求:D(Y+Z).
设(X,Y)服从二维正态分布,则下列说法不正确的是().
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X—Y不相关的充分必要条件为().
(94年)设随机变量X1,X2,X3,X4相互独立且同分布,P(Xi=0)=0.6,P(Xi=1)=0.4(i=1,2,3,4).求行列式X=的概率分布.
已知{an}是单调增加且有界的正数列,证明:级数收敛.
随机试题
关于图书书稿审稿后编辑与作者的联系,说法错误的是()。
我国某进出口公司甲(卖方)与美国某贸易公司乙(买方)以CIF芝加哥条件签订了一份出口5000吨小麦的合同。货物由中国人民保险公司办理了海洋运输货物保险后按时由承运人天建国际海洋运输公司装船运输。因在海上遭遇暴风雨袭击,迟延四个星期到达目的港,并因船员的过失
患者,男性,36岁。中午饮酒后突然出现上腹中部剧烈刀割样疼痛,向腰背部呈带状放射,继而呕出胆汁,伴高热。急诊入院体检:急性痛苦面容,全腹疼痛,腹肌紧张。紧急处理措施中最重要的是
某化合物的结构式为,该有机化合物不能发生的化学反应类型是()。
机械设备进场前,承包单位应向项目()报送进场设备清单。
注册地与实际管理机构所在地均在法国的某银行,取得的下列各项所得中,应按规定缴纳我国企业所得税的有()。
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f′(c)|≤2a+b/2.
Mysisteristhreeyears________thanme.
新名词
Smalldogsgenerallylivelongerthanbigdogs.Butbodysizeisn’ttheonlyfactorthatdetermineshowlongdogssurvive.Perso
最新回复
(
0
)