首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在(-∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
f(x)在(-∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
admin
2016-09-13
33
问题
f(x)在(-∞,+∞)上连续,
=+∞,且f(x)的最小值f(x
0
)<x
0
,证明:f[f(x)]至少在两点处取得最小值.
选项
答案
令F(x)=f(x)-x
0
,则F(x)在(-∞,+∞)上连续,且F(x
0
)<0,[*]=+∞,由[*]=+∞,知[*],使得F(b)>0,于是由零点定理,知[*]x
1
∈(a,x
0
),使得F(x
1
)=0;[*]x
2
∈(x
0
,b),使得F(x
2
)=0,即有x
1
<x
0
<x
2
,使得f(x
1
)=x
0
=f(x
2
),从而得f[f(x
1
)]=f(x
0
)=f[f(x
2
)].
解析
转载请注明原文地址:https://kaotiyun.com/show/HDT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
求下列三重积分
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
求一曲线的方程,这曲线过原点,并且它在点(x,y)处的切线斜率等于2x+y。
求二元函数z=f(x,y)=x2y(4-x-y)在直线x+y=6,x轴和y轴所围成的闭区域D上的最大值和最小值.
设l1=(1,1),l2=(-1,1),分别求出函数z=xy在点(0,0)处沿方向l1和方向l2的二阶方向导数.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用(1)的结论计算定积分;
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
随机试题
卧式壳管蒸发器的停机处理时,观察蒸发器上的压力表读数,当读数大于()时,再重新起动压缩机。
TheName"UnitedNations"Thename"UnitedNations"was【C1】______(probable)devisedbyU.S.【C2】______(preside)FranklinD.
葡萄胎与绒癌的组织区别在于有无________。
A.杯口征B.“鸟嘴”征C.“阶梯状”排列D.线样征E.充盈缺损克罗恩病的X线表现
在类风湿关节炎中,对组织起主要作用的是
工程项目费用管理过程包括()。
254个志愿者来自不同的单位,任意两个单位的志愿者人数之和不少于20人,且任意两个单位志愿者的人数不同,问这些志愿者所属的单位数最多有几个?
作家柳青曾说,漫长的人生中,最关键的往往只是一两步。所以人的决断力很重要,在面对重大抉择时,如果______往往会______良机,令人追悔莫及。依次填入划横线处的词语,最恰当的一组是()
在面向对象方法中,不属于"对象"基本特点的是( )。
A、Itisareasonableclimateofsun.B、Itisacertainmildclimate.C、Itiscoldinwinterandhotinsummer.D、Itisalwaysra
最新回复
(
0
)