设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明 (1)存在c∈(0,1),使得f(c)=; (2)存在ξ≠η∈(0,1),使得=2.

admin2016-11-03  24

问题 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明
(1)存在c∈(0,1),使得f(c)=
(2)存在ξ≠η∈(0,1),使得=2.

选项

答案(1)令F(x)=f(x)一1/2,则 F(0)=f(0)一1/2=-1/2<0, F(1)=f(1)一1/2=1—1/2=1/2>0. 由零点(介值)定理知,存在c∈(0,1),使F(c)=0,即f(c)=1/2. (2)在[0,c]及[c,1]上对f(x)分别使用拉格朗日中值定理得到:存在ξ∈(0,c),η∈(c,1),使得 [*] 于是[*]=2c+2(1一c)=2.得证. 注意 上面利用(1)的结论证明了(2)的结论,但(1)的结论也可由(2)的结论推出.事实上,由 [*] 得到 2f2(c)一2cf(c)一f(c)+c=f(c)[2f(c)一1]一c[2f(c)一1] =[f(c)一c][2f(c)一1]=0. 因f(x)不一定满足f(x)=x,故有2f(c)一1=0,即f(c)=1/2.

解析 (1)设F(x)=f(x)一1/2,对F(x)在[0,1]上使用零点定理即可.
(2)应利用(1)中结论,用C将[0,1]分为[0,c],[c,1]两个子区间,且在这两个不同的区间上使用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/HHu4777K
0

随机试题
最新回复(0)