首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明 (1)存在c∈(0,1),使得f(c)=; (2)存在ξ≠η∈(0,1),使得=2.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明 (1)存在c∈(0,1),使得f(c)=; (2)存在ξ≠η∈(0,1),使得=2.
admin
2016-11-03
37
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明
(1)存在c∈(0,1),使得f(c)=
;
(2)存在ξ≠η∈(0,1),使得
=2.
选项
答案
(1)令F(x)=f(x)一1/2,则 F(0)=f(0)一1/2=-1/2<0, F(1)=f(1)一1/2=1—1/2=1/2>0. 由零点(介值)定理知,存在c∈(0,1),使F(c)=0,即f(c)=1/2. (2)在[0,c]及[c,1]上对f(x)分别使用拉格朗日中值定理得到:存在ξ∈(0,c),η∈(c,1),使得 [*] 于是[*]=2c+2(1一c)=2.得证. 注意 上面利用(1)的结论证明了(2)的结论,但(1)的结论也可由(2)的结论推出.事实上,由 [*] 得到 2f
2
(c)一2cf(c)一f(c)+c=f(c)[2f(c)一1]一c[2f(c)一1] =[f(c)一c][2f(c)一1]=0. 因f(x)不一定满足f(x)=x,故有2f(c)一1=0,即f(c)=1/2.
解析
(1)设F(x)=f(x)一1/2,对F(x)在[0,1]上使用零点定理即可.
(2)应利用(1)中结论,用C将[0,1]分为[0,c],[c,1]两个子区间,且在这两个不同的区间上使用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/HHu4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 C
由Y=sinx的图形作下列函数的图形:(1)y=sin2x(2)y=2sin2x(3)y=1—2sin2x
被积函数的分子与分母同乘以一个适当的因式,往往可以使不定积分容易求,用这种方法求下列不定积分:
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
已知齐次线性方程组其中,试讨论a1,a2,…,an和b满足何种关系时,(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
(2008年试题,19)将函数f(x)=1—x2(0≤x≤π)展开成余弦形式的傅里叶级数,并求的和.
随机试题
Helentypes______.
急性糜烂性胃炎治疗不应使用
均质土坝的防渗体是()。
下列截面形状的钢筋混凝土梁中,抗弯刚度和抗扭能力大的是()。
根据《公司法》的规定,下列关于股份有限公司股份发行的表述不正确的是( )。
企业当期计提的坏账准备应该计入信用减值损失,且计提后不能转回。()
幂级数的和函数是_____.
记时器控件能有规律的以一定时间间隔触发【】事件,并执行该事件过程中的程序代码。
A、USaidprogramsin21countriesoverthenextthreeyearswillbehaltedB、USaidmissionsin21countriesoverthenextthree
A、Hesavesmuchmoneybecauseheneedn’tdrivecarortakebus.B、Hedoesn’thavetogetupontimeeveryday.C、Hecaneasilye
最新回复
(
0
)