首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
admin
2020-03-24
55
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
)经行初等变换为矩阵B=(β
1
,β
2
,β
3
,β
4
),且α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以
α
4
可由α
1
,α
2
,α
3
唯一线性表
示,又A=(α
1
,α
2
,α
3
,α
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组
x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
与x
1
β
1
+
x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
有唯一解,即β
4
可由β
1
,β
2
,β
3
唯一线性表示,选(C).
转载请注明原文地址:https://kaotiyun.com/show/HIx4777K
0
考研数学三
相关试题推荐
级数(α>0,β>0)的敛散性()
若f(-x)=-f(x),且在(0,+∞)内f’(x)>0,f’’(x)>0,则在(-∞,∞)内().
若向量组α,β,γ线性无关;α,β,δ线性相关,则
(2012年)已知级数条件收敛,则()
(97年)设两个随机变量X与Y相互独立且同分布,P(X=-1)=P(Y=-1)=,P(X=1)=P(Y=1)=,则下列各式成立的是【】
二元函数f(x,y)=x2(2+y2)+ylny的极小值为__________。
计算下列积分:(1)∫-12[x]max{1,e-x}dx,其中,[x]表示不超过x的最大整数.(2)∫03(|x-1|+|x-2|)dx.(3)设求∫13f(x-2)dx.(4)已知求∫2n2n+2f(x-2n)e-xdx,n=2,3,….
设某元件的使用寿命X的概率密度为f(x;θ)=其中θ>0为未知参数.又设(x1,x2,xn)是样本(X1,X2,…,Xn)的观察值,求参数θ的最大似然估计值.
二重积分ln(x2+y2)dxdy的符号为________.
随机试题
A、益气健脾,消食开胃B、消食化滞,泻火通便C、利湿消积,驱虫助食,健脾益气D、健脾和胃,平肝杀虫E、健脾开胃,促进消化,增强食欲肥儿疳积颗粒的功能是
产品组合是指项目不同产品的划分及其比例,含产品种类、品种的结构和相互间的数量关系,产品组合深度与广度的关联性,表现为()。
企业按规定为员工缴纳的住房公积金,属于()。
上市公司发行的可转换公司债券在发行结束()个月后,方可转换为公司股票。
如借款人拟将债务转让给第三方,必须事先获得()的同意。
市场预测的目的是为了预测_______。
导游人员带团时对待游客应该是()
人类学习的本质特点()。
在社会主义市场经济条件下,按劳分配()
下列4种不同数制表示的数中,数值最小的一个是
最新回复
(
0
)