首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明:β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A-E)及行列式|A+2E|.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明:β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A-E)及行列式|A+2E|.
admin
2016-09-19
94
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
(1)证明:β,Aβ,A
2
β线性无关;
(2)若A
3
β=Aβ,求秩r(A-E)及行列式|A+2E|.
选项
答案
(1)设 k
1
β+k
2
Aβ+k
3
A
2
β=0, ① 由题设Aα
i
=λ
i
α
i
(i=1,2,3),于是 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 代入①式整理得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0. 因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有 [*] 其系数行列式[*]≠0,必有k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关. (2)由A
3
β=Aβ有 A[β,Aβ,A
2
β]=[Aβ,A
2
β,A
3
β]=[Aβ,A
2
β,Aβ]=[β,Aβ,A
2
β][*] 令P=[β,Aβ,A
2
β],则P可逆,且 P
-1
AP=[*]=B, 从而有r(A-E)=r(B-E)=[*]=2. |A+2E|=|B+2E|=[*]=6.
解析
转载请注明原文地址:https://kaotiyun.com/show/HNT4777K
0
考研数学三
相关试题推荐
n≥16
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
试求常数a和b的值,使得
A是n阶矩阵,且A3=0,则().
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设线性方程组(I)与方程x1+2x2+x3=a-l(Ⅱ)有公共解,求a的值及所有公共解.
随机试题
A、Whilesittingintheirschool’scourtyard.B、Whileplayinggamesontheirphones.C、Whilesolvingamathematicalproblem.D、Wh
以下各项中,属于美国人的谈判风格的是()
A.印戒细胞B.R-S细胞C.透明细胞D.Touton多核巨细胞肾癌可出现
下述心绞痛属于不稳定型心绞痛,除了
避免施工中出现不利施工因素而影响进度的合理方法,包括()。
集体则是群体发展的【】
A、 B、 C、 D、 A外表面图只有两个白色的面,而且是相对的,所以折叠后不可能有两个白色的面相邻,可排除A、C;并且在相交的三个面中,至少有一面是白色的,可排除B,所以选D。
下列法律文件中由全国人民代表大会制定的有
某国政府在半年内两次宣布降低购房按揭贷款的利率,因此很多潜在的购房者都处于持币待购的状态,进一步观望利率能否再探新低,所以六月份新建房屋的销售量大幅下降,但是,一个值得关注的现象是,在新建房屋销售量大幅下降的同时,新建房屋销售的平均价格却在快速上涨。以下
Animportantpartofpolicestrategy,rapidpoliceresponseisseenbypoliceofficersandthepublicalikeasofferingtremendo
最新回复
(
0
)