首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,fˊ(x)≥0,gˊ(x)≥0.证明:对任意a∈[0,1],有∫0ag(x)fˊ(x)dx+∫01f(x)gˊ(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,fˊ(x)≥0,gˊ(x)≥0.证明:对任意a∈[0,1],有∫0ag(x)fˊ(x)dx+∫01f(x)gˊ(x)dx≥f(a)g(1).
admin
2016-09-13
70
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,fˊ(x)≥0,gˊ(x)≥0.证明:对任意a∈[0,1],有∫
0
a
g(x)fˊ(x)dx+∫
0
1
f(x)gˊ(x)dx≥f(a)g(1).
选项
答案
令F(a)=∫
0
a
g(x)fˊ(x)dx+∫
0
1
f(x)gˊ(x)dx-f(a)g(1),a∈[0,1],则 Fˊ(a)=g(a)fˊ(a)-fˊ(a)g(1)=fˊ(a)[g(a)-g(1)]. 因为x∈[0,1]时,fˊ(x)≥0,gˊ(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 Fˊ(a)=fˊ(a)[g(a)-g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫
0
1
g(x)fˊ(x)dx+∫
0
1
f(x)gˊ(x)dx-f(1)g(1) =∫
0
1
[g(x)f(x)]ˊdx-f(1)g(1)=g(1)f(1)-g(0)f(0)-f(1)g(1) =-f(0)g(0)=0, 所以,F(a)≥F(1)=0,即 ∫
0
a
g(x)fˊ(x)dx+∫
0
1
f(x)gˊ(x)dx-f(a)g(1)≥0, 即 ∫
0
a
g(x)fˊ(x)dx+∫
0
1
f(x)gˊ(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/HRT4777K
0
考研数学三
相关试题推荐
[*]
如果n个事件A1,A2,…,An相互独立,证明:
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
求抛物线y=ax2+bx+c上具有水平切线的点.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
利用已知函数的幂级数展开式,求下列幂级数的和函数,并指出其收敛区间:
求下列曲线所围成的图形的面积:(1)ρ=asin3φ;(2)ρ2=a2cos2φ.
试求常数a和b的值,使得
设判断f(x)在(一∞,1]是否有界,并说明理由.
随机试题
兴奋性突触后电位的产生,是由于突触后膜提高了何种离子的通透性()
预防校正弱视最主要的措施是()
使全部实验动物死亡的最低剂量使个别实验动物死亡的剂量
张风因产品质量问题,向法院起诉博瑞食品公司。张风为了赢得诉讼,决定委托诉讼代理人,其间遇到以下问题:下列哪些人员可以作为张风的诉讼代理人?()
下列各项中,属于成本计算方法的有()。
关于宗教和语言,下列说法正确的是()。
公务员法明确规定。公务员要遵守纪律,-恪守职业道德,模范遵守社会公德。请结合报考岗位谈谈你的理解。
已知总体分布为正态,方差未知。从这个总体中随机抽取样本容量为65的样本,样本平均数为60,样本方差为100,那么总体均值μ的99%的置信区间为
EvidencesofHumanHistoryInthestudyofhumanhistory,therearemanypointsthatrequirestudyandresearch;thereison
Whenwethinkofentrepreneurs,mostofusimagine【C1】______,successful,over-achieverslikeBillGatesofMicrosoft,RichardB
最新回复
(
0
)