首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f’(x)=[ψ(x)]2,其中ψ(x)在(—∞,+∞)内恒为负值,其导数ψ’(x)为单调减函数,且ψ’(x0)=0,则下列结论正确的是[ ].
设f’(x)=[ψ(x)]2,其中ψ(x)在(—∞,+∞)内恒为负值,其导数ψ’(x)为单调减函数,且ψ’(x0)=0,则下列结论正确的是[ ].
admin
2014-09-08
77
问题
设f’(x)=[ψ(x)]
2
,其中ψ(x)在(—∞,+∞)内恒为负值,其导数ψ’(x)为单调减函数,且ψ’(x
0
)=0,则下列结论正确的是[ ].
选项
A、y=f(x)所表示的曲线在(x
0
,f(x
0
))处有拐点
B、x=x
0
是y=f(x)的极大值点
C、曲线y=f(x)在(—∞,+∞)上是凹的
D、f(x
0
)是f(x)在(—∞,+∞)上的最大值
答案
A
解析
因ψ(x)在(一∞,+∞)内恒为负值,所以f’(x
0
)=[ψ(x
0
)]
2
≠0,由取得极值的必要条件,x
0
一定不是f(x)的极值点,故不选B;又如果f(x)的最值点x
0
在开区间(—∞,+∞)内取得,则x
0
一定是极值点,由上面的分析知,x
0
一定不是f(x)的极值点,故不选D.
f"(x)=2ψ(x)ψ’(x).由题设ψ’(x
0
)=0得,f"(x
0
)=2ψ(x
0
)ψ’(x
0
)=0.又因为ψ’(x)是单调递减函数,ψ(x)<0,所以,当x∈(—∞,x
0
)时f"(x)<0;当x∈(x
0
,+∞)时f"(x)>0.这表明(x
0
,f(x
0
))是曲线y=f(x)的拐点.
故选A.
转载请注明原文地址:https://kaotiyun.com/show/HZZi777K
本试题收录于:
GCT工程硕士(数学)题库专业硕士分类
0
GCT工程硕士(数学)
专业硕士
相关试题推荐
Whatdoes"POP"probablymean?
大山中学所有骑自行车上学的学生都倒家吃午饭,因此,有些家在郊区的大山中学的学生不骑自行车上学。为使上述论证成立,以下哪项关于大山中学的断定是必须假设的?
据国际卫生与保健组织1999年年会“通讯与健康”公布的调查报告显示,68%的脑癌患者都有经常使用移动电话的历史。这充分说明,经常使用移动电话将会极大地增加一个人患脑癌的可能性。以下哪项如果为真,则将最严重地削弱上述结论?
如果方程有两个不同实根,那么参数是的取值范围是().
齐次线性方程组的系数矩阵为A,若有3阶非零矩阵B使AB=0,则()。
平面上点A,C固定,B点可以移动.若△ABC三边a,b,C成等差数列,则点B一定在一条圆锥曲线上,此曲线是[].
设f(x)是连续函数,且满足方程=[].
已知集合A={(x,y)|y=2x,x∈R),B=((x,y)|y=2x,x∈R),则A∩B的元素数目为[].
设f(x)是连续函数,且,则[].
函数f(x)在[a,b]内有定义,其导数f’(x)的图形如图所示,则[].
随机试题
提托穴的定位是()。
患者,女性,39岁,近半年来,每于感染或劳累后出现劳力性呼吸困难,并逐渐加重,休息后也不易缓解,一周前受凉后出现呼吸困难,伴咳嗽,咳大量泡沫样痰,夜间不能平卧,以“慢性心功能不全,二尖瓣狭窄”收入院。患者既往曾有反复链球菌性咽炎史。该患者心脏瓣膜病最可
月经周期的长短取决于下列何项因素
具有抗尿崩症作用的药物是
基金收益扣除按照国家规定可以扣除的费用等项目后的余额称为()。
某市区酒厂为增值税一般纳税人,2019年10月发生如下经济业务:(1)向某商场销售自产粮食白酒15吨,每吨不含税单价为80000元,收取包装物押金174000元,收取品牌使用费18100元。(2)从云南某酒厂购进粮食白酒6吨,专用发票上注明每吨不含税进
【2014广西】研究性学习既是一门课程,又是一种学习方式。()
LSAT
Inadditiontourgetoconformwhichwegenerateourselves,thereistheexternalpressureofthevariousformalandinformalgr
Itisnotpolitetoarriveatadinnerpartymorethan15to20minuteslate.Thehostorhostessusuallywaitsforallthegues
最新回复
(
0
)