首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶正定矩阵,B为m×n实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A为m阶正定矩阵,B为m×n实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
admin
2015-07-10
89
问题
设A为m阶正定矩阵,B为m×n实矩阵.证明:B
T
AB正定的充分必要条件是r(B)=n.
选项
答案
因为(B
T
AB)
T
=B
T
A
T
(B
T
)
T
=B
T
AB,所以B
T
AB为对称矩阵, 设B
T
AB是正定矩阵,则对任意的X≠0, X
T
B
T
ABX=(BX)
T
A(BX)>0,所以BX≠0,即对任意的X≠0有BX≠0,或方程组BX=0只有零解,所以r(B)=n. 反之,设r(B)=n,则对任意的X≠0,有BX≠0, 因为A为正定矩阵,所以X
T
(B
T
AB)X=(BX)
T
A(BX)>0, 所以B
T
AB为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/HjU4777K
0
考研数学三
相关试题推荐
2022年1月,习近平主席在主持中国同中亚五国建交30周年视频峰会时指出,中国同中亚五国30年合作的成功密码,在于双方始终()。①相互尊重②睦邻友好③互利共赢④同舟共济
习近平总书记指出,生存是享有一切人权的基础,()是最大的人权。
据新华社2022年5月20日报道。国办目前印发《“十四五”国民健康规划》。《规划》提出,到2025年。我国人均预期寿命在2020年基础上继续提高()左右。
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
利用极坐标将积分,化成一元函数积分式,其中f连续.
设水以常速(即单位时间注入的水的体积为常数)注入图2.7所示的罐中,直至将水罐注满.画出水位高度随时问变化的函数y=y(t)的图形(不要求精确图形,但应画出曲线的凹凸方向并表示出拐点).
用适当方法判别下列级数的收敛性:
设函数y=f(x)具有三阶连续导数,其图形如图28所示,那么,以下4个积分中,值小于零的积分是().
随机试题
2001年原信息产业部制定的《电信业务经营许可证管理办法》(简称《办法》)规定“经营许可证有效期届满,需继续经营的,应提前90日向原发证机关提出延续申请。”2003年9月1日获得增值电信业务许可证(有效期为5年)的甲公司,于2008年拟向原发证机关某省通信
曹操诗歌的基本风格是()
Manypeoplehaveappliedforthe______position.
瘢痕性幽门梗阻病人术前纠正体液代谢和酸碱平衡失调时,选用的液体应为
女,38岁,寒战高烧,右侧胸痛3天,查体:T39.4℃,意识模糊,右下肺呼吸音减弱,血常规14.3×109次方,NO.88胸片示右下肺大片浸润阴影,该患者最可能的诊断是
依《维也纳条约法公约》的相关规定,下列说法正确的是哪些?()
根据契税法律制度的规定,下列各项中,不征收契税的有()。
信用证是指银行有条件的付款承诺,即开证银行依照客户(开证申请人)的要求和指示,承诺在符合信用证条款的情况下,凭规定的单据()
非法小广告并非一城之疾,根治也并非一城之事。单靠一地立法或各地分散立法,无法形成__________的治理合力,相关的行政执法权威也难以__________,更难达到治本之效。填入画横线部分最恰当的一项是:
对该政策持积极态度的声音认为,此举可打通商品住房和保障性住房流通的_______,可造就“多赢”的_______。首先,缩短了保障房供应、低收入人群轮候的周期,提高了保障房供应的效率;其次,加速了库存的_______。收购商品住房能提振楼市,土地和房地产税
最新回复
(
0
)