首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=(x1-x2)2+(x1-x3)2+(x3-x2)2, (Ⅰ)求二次型f的秩; (Ⅱ)求正交变换Q,使二次型f化为标准形.
设二次型f(x1,x2,x3)=(x1-x2)2+(x1-x3)2+(x3-x2)2, (Ⅰ)求二次型f的秩; (Ⅱ)求正交变换Q,使二次型f化为标准形.
admin
2017-10-25
64
问题
设二次型f(x
1
,x
2
,x
3
)=(x
1
-x
2
)
2
+(x
1
-x
3
)
2
+(x
3
-x
2
)
2
,
(Ⅰ)求二次型f的秩;
(Ⅱ)求正交变换Q,使二次型f化为标准形.
选项
答案
(Ⅰ)实对称矩阵A的特征多项式为 |λE-A|=(λ-1)
2
(λ-3), 故A的特征值为λ
1
=λ
2
=1,λ
3
=3.于是,A与对角矩阵[*]相似,又因为A与B相似,故B也与对角矩阵[*]相似,因此,B的特征值为λ
1
=λ
2
=1,λ
3
=3,且R(E-B)=1, 又因为x+5=λ
1
+λ
2
+λ
3
=5,解得x=0. 由 [*] 得y=-2,z=3. (Ⅱ)经计算可知,将实对称矩阵A化为对角矩阵的相似变换矩阵可取为P
1
=[*],即 P
1
-1
AP
1
=[*] 把矩阵B化为对角矩阵的相似变换矩阵可取为P
2
=[*],即 P
2
-1
BP
2
=[*] 取 P=P
1
P
2
-1
=[*] 有 PAP=P
2
P
1
-1
AP
1
P
2
-1
=P
2
[*]P
2
-1
=B.
解析
将A,B分别与同一个对角阵相似,再由相似的传递性,可得A,B相似.
转载请注明原文地址:https://kaotiyun.com/show/Hkr4777K
0
考研数学一
相关试题推荐
设f(x)连续,且.证明:(1)若f(x)是偶函数,则F(x)为偶函数;(2)若f(x)单调不增,则F(x)单调不减.
设X~U(0,2),Y=X2,求Y的概率密度函数.
设A是n阶正定矩阵,证明:|E+A|>1.
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点,求L的方程.
用变量代换x=sint将方程化为y关于t的方程,并求微分方程的通解.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间内方程f(x)=0的实根个数为()
设A为n阶矩阵且r(A)=n一1.证明:存在常数k,使得(A*)2=kA*.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.求矩阵ABT的秩r(ABT);
设n阶矩阵A的秩为1,试证:存在常数μ,对任意正整数k,使得Ak=μk-1A.
随机试题
A、细菌总数≤5cfu/cm2,并未检出致病菌B、细菌总数≤10cfu/cm2,并未检出致病菌C、细菌总数≤15cfu/cm2,并未检出致病菌D、细菌总数≤20cfu/cm2,并未检出致病菌E、沙门氏菌Ⅱ类区域物品和表面消毒效果的监测结果判定消
下列关于再审案件的审理程序的叙述,错误的是:()
(2006年)级数内收敛于函数()。
《安全生产法》明确确立的安全生产的基本目标是______。
某实验小组想要通过试验观察原油发生沸溢的现象,但沸溢试验没有成功,沸溢形成必须具备的条件有()
企业让渡资产使用权所计提的摊销额等,一般应该计入()。
具体劳动和抽象劳动是()。
2011年全年,全国共计完成服装总产量436亿件,其中梭织服装(含皮革服装)146亿件:针织服装290亿件,与2010年相比分别增加0%、-0.68%、0.35%。2011年,我国服装产量前五名大省仍为广东、江苏、浙江、山东和福建省,该五省总产量占全国总
处理个人与他人的关系,关键要处理好()
A、Hehastouseapassword.B、HehastoshowhisIDcard.C、Heonlyneedstofilloutawithdrawalform.D、Heneedstofillout
最新回复
(
0
)