首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
admin
2021-11-15
9
问题
设A是三阶实矩阵,λ
1
,λ
2
,λ
3
是A的三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是三个对应的特征向量,证明:当λ
2
λ
3
≠0时,向量组ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)线性无关.
选项
答案
因[ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)] =[ξ
1
,λ
1
ξ
1
+λ
2
ξ
2
,λ
1
2
ξ
1
+λ
2
2
ξ
2
+λ
3
2
ξ
3
] =[ξ
1
,ξ
2
,ξ
3
][*] 因λ
1
≠λ
2
≠λ
3
,故ξ
1
,ξ
2
,ξ
3
线性无关,由上式可知 ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)线性无关<=> [*] =λ
2
λ
3
2
≠0,即λ
2
λ
3
≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/I3l4777K
0
考研数学一
相关试题推荐
已知A,B,C都是行列式值为2的三阶矩阵,则D==________。
经过平面∏1:x+y+1=0与平面∏2:x+2y+2z=0的交线,并且与平面∏3:2x—y—z=0垂直的平面方程是_________.
请用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f′(x0)≠0,则△x→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)-f(x0)与△x比较是()无穷小,△y—df(x)|x=x0与△x比较是(
设f(x)二阶连续可导,且y(0)=1,f(2)=3,f’(2)=5,则∫01xf"(2x)dx=___________。
设A=,A*是A的伴随矩阵,则A*x=0的通解是______.
极限为().
已知当x→0时,f(x)=3sinx-sin3x与cxk是等价无穷小,则().
[*][*]本题考查的是分段函数的定积分,该类型的题目重点是如何分段。
设f(x,y)有二阶连续偏导数,则f(x,y)=______.
设有3阶实对称矩阵A满足A3-6A2+11A-6E=0,且|A|=6.写出用正交变换将二次型f=xT(A+E)x化成的标准形(不需求出所用的正交变换);
随机试题
针对非均质多油层油田注水开发的工艺技术,既可以加大差油层的注水量,也可以控制好油层注水量的注水方式称()注水。
正确论述膜剂的是
患者男,60岁。无痛性全程肉眼血尿,伴腰痛,消瘦,体重下降;查体:腹软,未扪及明显包块,肾区叩痛(一)。全血细胞计数:白细胞13×109/L,中性粒细胞85%,肾功能肌酐60μmol/L,尿素氮6.1mg/L,血沉20mm/h,尿常规:红细胞(++),尿细
关于肝与志、液、体、华、窍的关系,正确的是()。
土建工程图中的细实线用于表示()。
价值工程实施的创新阶段,方案创造的方法很多,主要包括()。
下列说法不正确的一项是()。
夏季消防检查工作开展以来,云南昭通消防支队鲁甸县大队不断延伸消防监督管理工作触角,积极动员全县乡镇派出所民警投入到夏季消防检查工作一线中,全面筑牢夏季消防安全防线。该消防大队近一周工作记录如下表所示:当派出所民警在为广大群众现场讲解防灭火消防安全常识
Peoplesaveortakemoneyfromit.Webuythingsthere.
WhichofthefollowingisNOTtrueaboutSally’seducationandexperience?
最新回复
(
0
)