首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设连续型随机变量X1与X2相互独立且方差均存在,X1与X2的概率密度分别为f1(x)与f2(x),随机变量Y1的概率密度为随机变量Y2=(X1+X2),则( ).
设连续型随机变量X1与X2相互独立且方差均存在,X1与X2的概率密度分别为f1(x)与f2(x),随机变量Y1的概率密度为随机变量Y2=(X1+X2),则( ).
admin
2017-06-12
38
问题
设连续型随机变量X
1
与X
2
相互独立且方差均存在,X
1
与X
2
的概率密度分别为f
1
(x)与f
2
(x),随机变量Y
1
的概率密度为
随机变量Y
2
=
(X
1
+X
2
),则( ).
选项
A、E(Y
1
)>E(Y
2
),D(Y
1
)>D(Y
2
)
B、E(Y
1
)=E(Y
2
),D(Y
1
)=D(Y
2
)
C、E(Y
1
)=E(Y
2
),D(Y
1
)<D(Y
2
)
D、E(Y
1
)=E(Y
2
),D(Y
1
)>D(Y
2
)
答案
D
解析
由X
1
与X
2
相互独立,且Y
2
=
(X
1
+X
2
),知E(Y
2
)=
[E(X
1
)+E(X
2
),D(Y
2
)=
[D(X
1
)+D(X
2
)].
由X
1
与X
2
相互独立,且
可得
E(Y
1
)=∫
-∞
+∞
y.
[f
1
(y)+f
2
(y)]dy=
[E(X
1
)+E(X
2
)],
所以E(Y
1
)=E(Y
2
),D(Y
1
)>D(Y
2
).故选D.
转载请注明原文地址:https://kaotiyun.com/show/I4u4777K
0
考研数学一
相关试题推荐
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱仪装有3件合格品.从甲箱中任取3件产品放入乙箱后,乙箱中次品件数X的数学期望=__________;(2)从乙箱中任一件产品是次品的概率=_____________.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设常数a≠1/2,则=________.
设随机变量X和Y相互独立且都服从正态分布N(0,1),而X1,X2,…,X9和Y1,Y2,…Y9分别是来自总体X和Y的简单随机样本,求统计量所服从的分布,并指明参数.
设X1,X2,…,Xn(n>2)为来自总体N(0,σ2)的简单随机样本,其样本均值为,记Yi=Xi-,i=1,2,…,n.(I)求Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)求Y1与Yn的协方差cov(Y1,Yn);(Ⅲ)
随机试题
由盛唐过渡到中唐的一位集大成的诗人是()。
咳嗽伴胸痛不常见于
求取建筑物折旧应注意的事项包括:()。
甲公司2009年8月1日资产总额为500万元,8月份发生下列经济业务:(1)向某公司购入材料200000元已验收入库,货款未付。(2)办公事主任张明因出差预借现金4000元。(3)以银行存款归还银行借款500000元。(4)生产乍问领用材料1000
张先生夫妇今年均已40岁,家里存款在50万元左右。他和妻子两个人每月收入大约1万元,月花费近4000元。张先生和妻子计划在10年后退休,假设他们退休后再生存30年,且他们每年花费16万元(注:这笔钱在每年年初拿出),减掉基本养老保险和保险公司给予的保险金3
网页广告设计流程的注意事项包括______、______、______、______。
物业服务企业对写字楼物业的管理、经营与服务是相辅相成的,()是其基本职责,()是其生存发展的基础,()是确保经营和服务正常运行的枢纽。三位—体,三者并重,缺一不可。
A、 B、 C、 D、 C
A、Yes,Ido.B、Sorry,Idon’tknow.C、Isthatright?A听力原文:Doyoulikeswimming?意为:你喜欢游泳吗?是—…般疑问句,应该用Yes或No来回答。所以应选A。
Thehumanbraincontains10thousandmillioncellsandeachofthesemayhaveathousandconnections.Suchenormousnumbersused
最新回复
(
0
)