首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2013-04-04
73
问题
设向量α
1
,α
2
,...,α
t
是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
证法一:(定义法) 若有一组数k,k
1
,k
2
,…,k
t
,使得 kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…k
t
(β+α
t
)=0, 则因α
1
,α
2
,...,α
t
是Ax=0的解,知Aα
i
=0(i=1,2,…,t),用A左乘上式的两边,有 (k+k
1
+k
2
+…+k
t
)Aβ=0. 由于Aβ≠0,故k+k
1
+k
2
+…+k
t
=0. 重新分组为(k+k
1
+k
2
+…+k
t
)β+k
1
α
1
+k
2
α
1
+…+t
t
α
t
=0. k
1
α
1
+k
2
α
1
+…+t
t
α
t
=0. 由于α
1
,α
2
,...,α
t
是基础解系,它们线性无关,故必有 k
1
=0,k
2
=0,…,k
t
=0. k=0. 因此,向量组β,β+α
1
,...,β+α
t
线性无关. 证法二:(用秩) 经初等变换向量组的秩不变.把第1列的一1倍分别加至其余各列,有 (β,β+α
1
,β+α
2
,...,β+α
t
)→(β,α
1
,α
2
,…,α
t
). 因此 r(β,β+α
1
,β+α
2
,...,β+α
t
)=r(β,α
1
,α
2
,…,α
t
). 由于α
1
,α
2
,…,α
t
是基础解系,它们是线性无关的,秩r(α
1
,α
2
,…,α
t
)=t,又β必不能由α
1
,α
2
,…,α
t
线性表出(否则Aβ=0),故 r(β,α
1
,α
2
,…,α
t
,β)=t+1. 所以 r(β,β+α
1
,β+α
2
,...,β+α
t
)=t+1. 即向量组β,β+α
1
,β+α
2
,...,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/GX54777K
0
考研数学一
相关试题推荐
(2013年)设A,B,C均为n阶矩阵.若AB=C,且B可逆,则
A、 B、 C、 D、 B
设函数g(x)可微,h(x)=e1+g(x),h’(1)=1,g’(I)=2,则g(1)等于
(2009年)函数f(χ)=的可去间断点的个数为【】
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
[2017年]设A为3阶矩阵,P=[α1,α2,α3]为可逆矩阵,且P-1AP=,则A(α1+α2+α3)=().
设线性方程组已知[1,一1,1,一1]T是方程组的一个解,试求:(I)方程组的全部解,并用对应的齐次方程组的基础解系表示全部解;(Ⅱ)该方程组x2=x3的全部解.
当x→0时,α(x)=kx2与β(x)=是等价无穷小,则k=________.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设函数f(x)=ax-b㏑x(a>0)有两个零点,则b/a的取值范围是()
随机试题
Branemark系统的种植体是
某女性患者,45岁。唇部黏膜肿胀破溃3个月余。口腔检查:下唇左侧可见一直径1cm的浅表、微凹溃疡,基底有少许渗出物,渗出物下可见桑葚样肉芽肿,溃疡边缘清楚、微隆,呈鼠噬状。继续巩固阶段用药方法是()
患者,男,45岁。神思恍惚,梦魂颠倒,心悸易惊,善悲欲哭,肢体困乏,饮食减少。舌质淡,脉细无力。其治法是()
企业法律顾问参与企业重大经营决策的主要作用是保证决策的合法性和法律上的可行性,下列选项中,体现这一作用的有()。
30~38:某钢筋混凝土结构高层建筑,如图4-17所示,地上7层;地下室顶层可作为上部结构的嵌固端。屋顶板及地下室顶板采用梁板结构,第2~7层楼板沿外围周边均设框架梁,内部为无梁楼板结构;建筑物内的二方筒设剪力墙,方筒内楼板开大洞处均设边梁。该建筑物抗震设
上海进出口贸易公司(SHANGHAIIMPORTANDEXPORTCO.LTD.)于2007年3月1日与澳大利亚客户MANDARSIMPORTSCo.Ltd.签定一份订购合同。内容如下: PURC
甲公司2013年3月5日向乙公司购买了一处位于郊区的厂房,随后出租给丙公司。甲公司以股权资金向乙公司支付总价款的30%,同时甲公司以该厂房作为抵押向丁银行借入余下的70%价款。这种租赁方式是()。
甲公司是乙公司的母公司。经股东大会批准,甲公司2×14年1月1日实施一项股权激励计划。其主要内容为:甲公司向乙公司50名管理人员每人授予1万份现金股票增值权,行权条件为乙公司2×14年度实现的净利润较前1年增长6%,截至2×15年12月31日,2个会计年度
英国教育家洛克的“白板说”出自他的著作()。
执行以下程序后,输出#号的个数是【】。#include<studio.h>main(){inti,j;for(i=1;i<5;i++)for(j=2;j<=i;j++)putchar(’#’);}
最新回复
(
0
)