首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f"(x0)-≤(x-x0)2,其中x’为x关于x0的对称点.
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f"(x0)-≤(x-x0)2,其中x’为x关于x0的对称点.
admin
2019-11-25
86
问题
设f(x)在x
0
的邻域内四阶可导,且|f
(4)
(x)|≤M(M>0).证明:对此邻域内任一异于x
0
的点x,有|f"(x
0
)-
≤
(x-x
0
)
2
,其中x’为x关于x
0
的对称点.
选项
答案
由f(x)=f(x
0
)+f’(x
0
)(x-x
0
)+[*](x-x
0
)+[*](x-x
0
)+[*](x-x
0
)
4
,f(x’)=f(x
0
)+f’(x
0
)(x’-x
0
)+[*](x’-x
0
)
3
+[*](x’-x
0
)
4
, 两式相加得f(x)+f(x’)-2f(x
0
)=f”(x
0
)(x-x
0
)
2
+[*][f
(4)
(ξ
1
)+f
(4)
(ξ
2
)](x-x
0
)
4
, 于是|f”(x
0
)-[*]|≤[*][|f
(4)
(ξ
1
)|+|f
(4)
(ξ
2
)|](x-x
0
)
2
, 再由|f
(4)
(x)|≤M,得|f”(x
0
)-[*]|≤[*](x-x
0
)
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/IID4777K
0
考研数学三
相关试题推荐
若X~χ2(n),证明:EX=n,DX=2n.
在数中求出最大值.
讨论方程axex+b=0(a>0)实根的情况.
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
设平面区域D={(x,y)|x2+y2≤8,y≥},求二重积分
设积分其中D1={(x,y)|(x一2)2+(y一1)2≤2),D2={(x,y)|x2+(y+1)2≤2},则下列选项正确的是()
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.(1)计算ABT与ATB;(2)求矩阵ABT的秩r(ABT);(3)设C=E一ABT,其中E为n阶单位矩阵.证明:CTC=E一BAT一ABT+BBT的充要条件是ATA=1
抛掷一枚匀称的硬币,设随机变量X=则随机变量X在区间上取值的概率为________.
设F(x)=esintsintdt,则F(x)()
抛掷一枚匀称的硬币,设随机变量则随机变量X在区间上取值的概率为______.
随机试题
如图是洞口标志。
大出血时面色苍白,大汗淋漓,四肢厥冷,昏厥,脉微欲绝,为
痛觉敏感器所具有的生理特性包括
A.HBsAgB.抗-HBsC.HBcAgD.抗-HBcE.抗-Hbe不游离存在于血液中的标记物为
银行代理信托产品的风险有()。
物流信息指的是在物流活动进行中产生及使用的()。
取消高中阶段的文理分科,应当慎行。只有当绝大部分学校的课程、师资等教育资源丰富起来时,我国高中教育阶段实施真正意义上的学分制教育才具有坚实的发展基础;只有当包括高考和高校录取制度改革在内的教育整体改革逐步完成时,全面取消文理分科方可说水到渠成。全
对线性表进行二分法检索,其前提条件是()。
Alanguageisasignalingsystemwhichoperateswithsymbolicvocalsounds,andwhichisusedbyagroupofpeopleforthepurpo
TheAmericaneconomicsystemisorganizedaroundabasicallyprivateenterprise.It’s【B1】______economyinwhichconsumersdeterm
最新回复
(
0
)