首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=f(一x),且在(0,+∞)内二阶可导,又f’(x)>0,f"(x)<0,则f(x)在(一∞,0)内的单调性和图形的凹凸性是 ( )
设f(x)=f(一x),且在(0,+∞)内二阶可导,又f’(x)>0,f"(x)<0,则f(x)在(一∞,0)内的单调性和图形的凹凸性是 ( )
admin
2018-09-20
56
问题
设f(x)=f(一x),且在(0,+∞)内二阶可导,又f’(x)>0,f"(x)<0,则f(x)在(一∞,0)内的单调性和图形的凹凸性是 ( )
选项
A、单调增加,凸
B、单调减少,凸
C、单调增加,凹
D、单调减少,凹
答案
B
解析
当x>0时,f’(x)>0
f(x)在(0,+∞)内单调增加;f"(x)<0
f(x)在(0,+∞)内为凸曲线.
由f(x)=f(-x)
f(x)关于y轴对称
f(x)在(一∞,0)内单调减少,为凸曲线,选(B).
转载请注明原文地址:https://kaotiyun.com/show/XjW4777K
0
考研数学三
相关试题推荐
设随机变量X与Y的相关系数为,且E(X)=0,E(Y)=1,E(X2)=4,E(Y2)=10,则E(X+Y)2=________.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn一1=αn,Aαn=0.证明:α1,α2,…,αn线性无关;
设A,B为三阶矩阵,且AB=A一B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
证明:∫0πxasinxdx.,其中a>0为常数.
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明:
对二元函数z=f(x,y),下列结论正确的是().
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e一x=0,求f(x).
设f(x),g(x)在点x=0的某邻域内连续,且f(x)具有一阶连续导数,满足=0,f’(x)=一2x2+∫0xg(x一t)dt,则().
随机试题
CO2气体保护焊时,产生的气孔主要是由于保护气层被破坏,使空气入侵而形成氮气
中唐新乐府运动的倡导者是()
唇裂是由于以下哪两种突起不能联合形成的
下列哪项是引起便血的小肠疾病
最常用的超临界流体是()。
背景某安装工程公司经过招投标、评标、决标,与某机场建设部门订立了新建航站楼弱电系统工程项目施工合同,同时某建筑企业承担了航站楼土建工程的建设任务。施工过程中,发生了如下事件:事件一:在施工过程中,为保证工程质量,安装公司改进了部分线缆的接续工艺,人工费
With950millionpeople,IndiarankssecondtoChinaamongthemostpopulouscountries.ButsinceChina【B1】______afamilyplan
在UML中,(46)把活动图中的活动划分为若干组,并将划分的组指定给对象,这些对象必须履行该组所包括的活动,它能够明确地表示哪些活动是由哪些对象完成的。
TheproportionofworkscutforthecinemainBritaindroppedfrom40percentwhenIjoinedtheBBFCin1975tolessthan4per
A、Sydney.B、Paris.C、Tokyo.D、NewYorkCity.C短文提到,新加坡取代去年位于榜首的东京,成为生活成本最高的城市,故选C。
最新回复
(
0
)