首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有方程y”+(4x+e2y)(y’)3=0. (1)将方程转化为x为因变量,y作为自变量的方程; (2)求上述方程的通解.
设有方程y”+(4x+e2y)(y’)3=0. (1)将方程转化为x为因变量,y作为自变量的方程; (2)求上述方程的通解.
admin
2019-07-22
48
问题
设有方程y”+(4x+e
2y
)(y’)
3
=0.
(1)将方程转化为x为因变量,y作为自变量的方程;
(2)求上述方程的通解.
选项
答案
(1)由于[*],两边对x求导得 [*] 于是原方程化为[*] 即 x”(y)一4x=e
2y
. (2)特征方程为r
2
一4=0,得特征根r
1
=一2,r
2
=2,故方程对应的齐次方程的通解为 x=C
1
e
-2y
+C
2
e
2y
. 设特解的形式为x’=Aye
2y
, x*"=4Ae
2y
+4Aye
2y
. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ILN4777K
0
考研数学二
相关试题推荐
[*]
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设A为n阶矩阵,且|A|=0,则A().
设曲线y=,过原点作切线,求此曲线、切线及χ轴所围成的平面图形绕χ轴旋转一周所成的旋转体的表面积.
证明:当0<χ<1时,(1+χ)ln2(1+χ)<χ2.
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题:①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不是(Ⅱ)的解;④(Ⅱ)的解不是(Ⅰ)的解。以上命题中正确的是()
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+
设f(x)在[a,b]上连续,在(a,b)内可导.试证明:拉格朗日微分中值定理:至少存在一点ξ∈(a,b)使
设函数f’(x)在[a,b]上连续,且f(a)=0,试证明:
随机试题
患者,男,35岁。间断喘息发作5年,无明显季节性,发作以夜间为著。发作时口服β受体激动剂症状可明显缓解。近日喘息再次发作,行肺功能检查示,FEV占预计值的84%,FEV1/FVC82%。为明确诊断,应首先进行的检查是
在Word中,按______键可实现“插入”方式与“改写”方式的相互转换。
简述新时代党的建设的方针。
机体各种功能活动所消耗的能量中,最终不能转化为体热的是
关于酒剂与酊剂的叙述,正确的是()。
私人储蓄的两个来源是()。
也许监管部门已经习惯了让媒体跑在前面,自己在后__________,在舆论压力下被动执法,这样的监管从根本上是对违法企业的__________,企业自然有恃无恐。填入划横线部分最恰当的一项是:
下列关于企业合并与分立的说法不正确的是()
下列算法中,不属于进程调度算法的是
Somedoctorsaretakinganunusualnewapproachtocommunicatebetterwithpatients—theyareletting【C1】______readthenotestha
最新回复
(
0
)