首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵.证明: r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设A是m×n矩阵.证明: r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
admin
2017-10-21
50
问题
设A是m×n矩阵.证明: r(A)=1
存在m维和n维非零列向量α和β,使得A=αβ
T
.
选项
答案
“→”记A的列向量组为α
1
,α
2
,…,α
n
,则因为r(A)=1,所以r(α
1
,α
2
,…,α
n
)=1.于是A一定有非零列向量,记α为一个非零列向量,则每个α
i
都是α的倍数.设α
i
=b
i
α,i=1,2,…,n. 记β=(b
1
,b
2
,…,b
n
)
T
,则β≠0,并且A=(α
1
,α
2
,…,α
n
)=(b
1
α,b
2
α,…,b
n
α)=αβ
T
. “←”设A=αβ
T
,则r(A)≤r(α)=1.由于α,β都不是零向量,可设α的第i个分量a
i
≠0,β的第j个分量b
j
≠0.则A的(i,j)位元素为a
i
b
j
≠0,因此A≠0,从而r(A)>0.得r(A)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/IOH4777K
0
考研数学三
相关试题推荐
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
设A为可逆的实对称矩阵,则二次型XTAN与XTA—1X().
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
就a,b的不同取值,讨论方程组解的情况.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Ф(2)=0.977).
随机试题
女,30岁。畏寒、发热,肛周胀痛,排便时加重3日,检查:肛周皮肤发红、压痛明显,应诊断为
以下建设项目的环境影响报告书需报海洋主管部门核准的是( )。
缔约过失责任是基于对诚实信用原则,在当事人之间产生的一种义务的违反而应承担的法律责任。对此特定义务性质的错误表述是( )。
按建标[2003]206号文件的规定,下列应列入企业管理费的有()。
单位负责人的直系亲属不得担任本单位会计机构负责人。()
与其他个人贷款相比,个人住房贷款具有()特点。
从和式中必须去掉哪两个分数,才能使余下的分数之和等于1?()
押金的功能有()。
布卢姆等人在其教育目标分类系统中将教学目标分为“认知”“情感”和()三大领域。
周某到酒馆饮酒大醉,与邻座的王某发生口角。王某离开后,周某将酒馆酒柜里的酒全部砸碎,该损失应由()。
最新回复
(
0
)