首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
admin
2019-02-23
53
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f
’
(x)≥0,g
’
(x)≥0。
证明对任何a∈[0,1],有
∫
0
a
g(x)f
’
(x)dx+∫
0
1
f(x)g
’
(x)dx≥f(a)g(1)。
选项
答案
设 F(x)=∫
0
x
g(t)f
’
(t)dt+∫
0
1
f(t)g
’
(t)dt一f(x)g(1), 则F(x)在[0,1]上的导数连续,并且 F
’
(x)=g(x)f
’
(x)-f
’
(x)g(1)=f
’
(x)[g(x)一g(1)],由于x∈[0,1]时,f
’
(x)≥0,g
’
(x)≥0,因此F
’
(x)≤0,即F(x)在[0,1]上单调递减。 注意到 F(1)=∫
0
1
g(t)f
’
(t)dt+∫
0
1
f(t)g
’
(t)dt一f(1)g(1), 而又因为 ∫
0
1
g(t)f
’
(t)dt=∫
0
1
g(t)df(t)=g(t)f(t)|
0
1
—∫
0
1
f(t)g
’
(t)dt =f(1)g(1)一∫
0
1
f(t)g
’
(t)dt, 故F(1)=0。 因此x∈[0,1]时,F(x)≥F(1)=0,由此可得对任何a∈[0,1],有 ∫
0
a
g(x)f
’
(x)dx+∫
0
1
f(x)g
’
(x)dx≥f(a)g(1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/Ilj4777K
0
考研数学二
相关试题推荐
曲线y=x2(x≥0)上某点处作切线,使该曲线、切线与x轴所围成的面积为,求切点坐标、切线方程,并求此图形绕x轴旋转一周所成立体的体积.
求
设f(x)在[0,1]上连续,且f(x)<1,证明:在(0,1)内有且仅有一个实根.
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+o(x3)
求下列极限:
求下列旋转体的体积V:(Ⅰ)由曲线χ2+y2≤2χ与)y≥χ确定的平面图形绕直线χ=2旋转而成的旋转体;(Ⅱ)由曲线y=3-|χ2-1|与戈轴围成封闭图形绕直线y=3旋转而成的旋转体.
求下列不定积分:
n为自然数,证明:
A、0。B、6。C、36。D、∞。C方法一:凑成已知极限。(由于1-cosx~1/2x31-cos(6x)~1/2(6x)2)所以=36+0=36。方法二:根据极限与无穷小量的关系,由已知极限式令从而sin6x+xf(x)=a(x)
随机试题
在D盘下新建一个Excel工作簿,完成以下操作:(1)在Sheet1工作表的A1:H6区域中建立和编辑如表所示的数据表。(2)设置“班级学习成绩表”为居中、加粗、字号20,“高一”、“高二”和“高三”为居中、加粗、字号16,各班级标题居中、加粗,其余
静脉回流的影响因素,包括
类风湿关节炎最早侵犯的关节是
某城市小学投资700万元建设教学楼,组织工程施工公开招标,招标文件规定投标人应具备的资格条件中,正确合理的是()。
根据《测绘法》,省、自治区、直辖市和自治州、县、自治县、市行政区域界线的标准画法图,由()拟订,报国务院批准后公布。
在下列给出的投资方案评价方法中,可用于计算期不同的互斥型方案评价的动态方法是()。
Whatdoesthefutureholdfortheproblemofhousing?Agood(1)_____depends,ofcourse,onthemeaningof"future".Ifoneis
现代计算机中采用二进制码,下列选项中不是它的优点是
Thecurrentadministration,beingworriedoversomeforeigntradebarriersbeingremovedandourexportsfailingtoincreaseas
NicholasChauvin,aFrenchsoldier,airedhisvenerationofNapoleonBonaparteso______andunceasinglythathebecamethelaug
最新回复
(
0
)