首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
已知非齐次线性方程组有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
admin
2016-10-21
83
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明此方程组的系数矩阵A的秩为2.
(2)求a,b的值和方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是AX=β的3个线性无关的解,则,α
2
-α
1
,α
3
-α
1
是AX=0的2个线性无关的解.于是AX=0的解集合的秩不小于2,即4-r(A)≥2,r(A)≤2, 又因为A的行向量是两两线性无关的,所以r(A)≥2. 两个不等式说明了r(A)=2. (2)(A|β)=[*] 由r(A)=2,得出a=2,b=-3. 代入后继续作初等行变换化简单阶梯形矩阵: [*] 得同解方程组[*] 求出一个特解(2,-3,0,0)
T
和AX=0的基础解系(-2,1,1,0)
T
,(4,-5,0,1)
T
.得到方程组的通解: (2,-3,0,0)
T
+c
1
(-2,1,1,0)
T
+c
2
(4,-5,0,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/XJt4777K
0
考研数学二
相关试题推荐
求极限
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2,求f(x,y)在椭圆域上的最大值和最小值。
求二元函数f(x,y)=x2(2+y2)+ylny的极值。
设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0,证明:f(x)在(0,+∞)内有且仅有一个零点。
设函数f(x)在[a,b]上具有连续的二阶导数,证明:在(a,b)内存在一点ξ,使得∫abf(x)dx=(b-a)(b-a)3f"(ξ)①
求下列各极限:
A、0B、1C、-π/2D、π/2A判断间断点类型的基础是求函数在间断点处的左、右极限.
求f(x,y,z)=lnx+2lny+3lnz存球面x2+y2+z2=6r2(r>0)上的最大值,并由此证明:对任意正数a,b,c成立
一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3个小时内,融化了其体积的7/8,问雪堆全部融化需要多少小时?
(1992年)已知f〞(χ)<0,f(0)=0,试证:对任意的两正数χ1和χ2,恒有f(χ1+χ2)<f(χ1)+f(χ2)成立.
随机试题
急性心肌梗死后,发生窦性心动过速伴有室性期前收缩,优先使用的抗心律失常药物是
Manyteachersbelievethattheresponsibilitiesforlearningliewiththestudent.【51】alongreadingassignmentisgiven,instru
夜间阵发性呼吸困难发生的机制与下列哪项关系不大
真核生物DNA复制中填补冈崎片段间空隙的酶是
患者,女,76岁。右额面部束带状刺痛5天,局部皮肤潮红,皮疹呈簇状水疱,排列如带状,小便黄,大便干,舌红苔薄黄,脉弦。治疗除取血海、三阴交、太冲外,还应加
培养脑膜炎奈瑟菌应在培养基中加入
施工组织设计的分类依据为()。
产业结构的优化是一个动态过程,应符合哪些要求?
某企业采用融资棍赁方式租入一台设备。设备原价100万元,租期5年,折现率为12%,则每年初支付的等额租金为()。
给的四个选项中,选择最合适的一个填入问号处,使之呈观一定的规律性。
最新回复
(
0
)