首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设L:Y=f(x)为过点M(0,1)且位于第一象限的增函数,P(x0,y0)为曲线L上任意一点,已知曲线位于M到P之间的弧长与[0,x0]上曲边梯形的面积相等. (Ⅰ)求该曲线y=f(x); (Ⅱ)证明:有且仅有一点c∈(0,1),使得[0,c]上以f(c
设L:Y=f(x)为过点M(0,1)且位于第一象限的增函数,P(x0,y0)为曲线L上任意一点,已知曲线位于M到P之间的弧长与[0,x0]上曲边梯形的面积相等. (Ⅰ)求该曲线y=f(x); (Ⅱ)证明:有且仅有一点c∈(0,1),使得[0,c]上以f(c
admin
2021-03-16
58
问题
设L:Y=f(x)为过点M(0,1)且位于第一象限的增函数,P(x
0
,y
0
)为曲线L上任意一点,已知曲线位于M到P之间的弧长与[0,x
0
]上曲边梯形的面积相等.
(Ⅰ)求该曲线y=f(x);
(Ⅱ)证明:有且仅有一点c∈(0,1),使得[0,c]上以f(c)为高的矩形的面积与[c,1]上以y=f(x)为曲边的曲边梯形的面积相等.
选项
答案
(Ⅰ)M到P之间的弧长为[*] 曲边梯形的面积为[*] 由题意得[*] 两边求导得[*] 解得[*],或[*],积分得 [*] 因为曲线L经过(0,1),所以C=0,故y=f(x)=[*] (Ⅱ)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt, 令[*](x)=S
1
(x)-S
2
(x)=xf(x)-∫
x
1
f(t)dt, 再令F(x)=x∫
1
x
f(t)dt,显然F’(x)=[*](x), 因为F(0)=F(1)=0,所以由罗尔定理,存在c∈(0,1),使得F’(c)=0,或[*](c)=0, 即存在点c∈(0,1),使得[0,c]上以f(c)为高的矩形的面积与[c,1]上以y=f(x)为 曲边的曲边梯形的面积相等; [*](x)=2f(x)+xf’(x)=e
x
+e
-x
+[*](e
x
-e
-x
)>0(0<x<1), 则[*](x)在[0,1]上单调递增,故c∈(0,1)是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/Isy4777K
0
考研数学二
相关试题推荐
(97)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(14)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
=_______.
的通解为_______.
微分方程xy’+y=0满足初始条件y(1)=2的特解为_________。
设方程组有解,则a1,a2,a3,a4满足的条件是_______.
设曲线y=lnx与y=相切,则公共切线为______
下列二元函数在点(0,0)处可微的是
设{an}与(bn}为两个数列,下列说法正确的是().
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3,线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(
随机试题
下列选项中,手术患者体位的安置要求包括()。
获得噪声源数据途径有()。
反映投资方案盈利能力的动态评价指标有()。
干粉灭火设备由()输气管、过滤器、球形阀、喷头、喷枪、干粉炮等组成。
在工程网络计划中,工作F的最早开始时间为第15天,其持续时间为5d。该工作有三项紧后工作,它们的最早开始时间分别为第24天、第26天和第30天,最迟开始时间分别为第30天、第30天和第32天,则工作F的总时差和自由时差()d。
传统的杜邦财务分析体系并不尽如人意,其局限性有()。
给定材料1.近几年,现金贷行业崛起,发展速度极快,盈利能力极强。Q公司靠校园贷起家,几年来的业绩呈爆发式增长,在现金贷行业算是一匹黑马。其招股书显示,Q公司2014年、2015年和2016年的收入分别为2410万元、2.35亿元和14.428亿
设f(χ)∈C[-π,π],且f(χ)=+∫-ππf(χ)sinχdχ,求f(χ).
在代码中定义了一个子过程:SubP(a,B)...EndSub下面______调用该过程的格式是正确的。
Theappearanceoftheusedcaris,it’smuchnewerthanitreallyis.
最新回复
(
0
)