首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥b,若A一μE是正定阵,则参数μ应满足 ( )
设A是3阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥b,若A一μE是正定阵,则参数μ应满足 ( )
admin
2018-03-30
97
问题
设A是3阶实对称矩阵,λ
1
,λ
2
,λ
3
是A的三个特征值,且满足a≥λ
1
≥λ
2
≥λ
3
≥b,若A一μE是正定阵,则参数μ应满足 ( )
选项
A、μ>b.
B、μ<b.
C、μ>a.
D、μ<a.
答案
B
解析
A是实对称阵,则A一μE也是实对称阵.A一μE的特征值为λ
1
一μ,λ
2
一μ,λ
3
一μ,且满足
a一μ≥λ
1
一μ≥λ
2
一μ≥λ
3
一μ≥b一μ.
当b一μ>0即μ
(A)中μ>b,即b—μ<0,A一μE的全部特征值大于等于负值,不能确定A一μE的正定性.
(C)中μ>a,即a一μ<0,A一μE的全部特征值小于等于负值,A一μE是负定矩阵.
(D)中μ<a,即a一μ>0,A一μE的全部特征值小于等于正值,不能确定A一μE的正定性.
转载请注明原文地址:https://kaotiyun.com/show/IuX4777K
0
考研数学三
相关试题推荐
设实对称矩阵A满足A2=O,证明:A=O.
设A,B,C均为竹阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B一C为【】
设级数的和函数为S(x).求:(I)S(x)所满足的一阶微分方程;(Ⅱ)S(x)的表达式.
设平面图形A由x2+y2≥2x与y≥x所确定,求图形A绕x=2旋转一周所得旋转体体积.
设函数y=f(x)在区间[一1,33上的图形为则函数的图形为
设随机变量X,Y相互独立均服从正态分布N(0,σ2),求的概率密度fz(z);
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
在最简单的全概率公式P(B)=P(A)P(B|A)+P(A)P(B|A)中,要求事件A与B必须满足的条件是()
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足若f(x,y)在D内没有零点,则f(x,y)在D上().
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.97试用切比雪夫不等式和中心极限定理来分别求解.(Ф(1.645)=0.95)
随机试题
亚硫酸盐能破坏肉、鱼等动物性食品中的()。
甲醛、乙醛、丙酮三种化合物可用()一步区分开。
刺激迷走神经可用于治疗
女,20岁。上前牙松动3年,检查见上切牙松动Ⅱ°扇形移位,口腔卫生较好,初步印象为局限性青少年牙周炎。若已确诊,其可能还具有的特征如下,但不包括
满山红的质量控制成分是()
长上公司与艺海公司在履行合同过程中发生了纠纷。长上公司按照仲裁条款向选定的石家庄市仲裁委员会提交了仲裁申请。下列关于该案仲裁庭的组成的表述哪个是错误的?
下列关于简易程序的说法中,错误的是()。
危机发生时,如果公司能够采取有效的措施来消除不利影响,那么反而能够增加公司的声誉。一个非常好的声誉,可能仅仅因为一个事件,转眼间就被破坏殆尽;而一个不好的声誉,往往需要很长时间的努力才能消除它。如果以上陈述为真,则最能支持以下哪项陈述?()
马克思认为资本主义制度下的工资掩盖了资本主义剥削的实质,这是因为工资
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
最新回复
(
0
)