首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3. ① 证明α,Aα,A2α线性无关. ② 设P=(α,Aα,A2α),求P-1AP.
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3. ① 证明α,Aα,A2α线性无关. ② 设P=(α,Aα,A2α),求P-1AP.
admin
2020-06-11
58
问题
设A是3阶矩阵,α
1
,α
2
,α
3
都是3维非零列向量,满足Aα
i
=iα
i
,(i=1,2,3).记α=α
1
+α
2
+α
3
.
① 证明α,Aα,A2α线性无关.
② 设P=(α,Aα,A
2
α),求P
-1
AP.
选项
答案
条件说明α
1
,α
2
,α
3
都是A的特征向量,特征值依次为1,2,3,因此α
1
,α
2
,α
3
线性无关. ① α=α
1
+α
2
+α
3
,Aα=α
1
+2α
2
+3α
3
,A
2
α=α
1
+4α
2
+9α
3
,用矩阵分解,矩阵P=(α,Aα,A
2
α)=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
)[*][*]的行列式为2,因此是可逆矩阵.于是r(α,Aα,A2α)=r(P)=r(α
1
,α
2
,α
3
)=3,α,Aα,A
2
α线性无关.② 记P
一1
AP=B,则AP=PB,即(Aα,A
2
α,A
3
α)=(α,Aα,A
2
α)B.于是B是向量组Aα,A
2
α,A
3
α对α,Aα,A
2
α的表示矩阵.显然其第1,2两列分别为(0,1,0)
T
和(0,0,1)
T
.第3列是A
3
α对α,A
3
α,A
2
α的表示系数,设为c
1
,c
2
,c
3
,则P(c
1
,c
2
,c
3
)
T
=A
3
α, 注意A
3
α=α
1
+8α
2
+27α
3
,于是[*] 因为(α
1
,α
2
,α
3
)是可逆矩阵,所以有[*]用初等变换法求得c
1
=6,c
2
=一1 1,c
3
=6,于是[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/J184777K
0
考研数学二
相关试题推荐
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求矩阵A的特征值;
(1)计算(2)当x→1-时,求与等价的无穷大量.
求极限
设D=计算D;
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为.试求y=f(x)所满足的微分方程,并求该方程满足条件的解.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵A,使得QTAQ=A。
设函数z=(1+ey)cosχ-yey,证明:函数z有无穷多个极大值点,而无极小值点.
随机试题
肱骨外科颈骨折可损伤
周期性瘫痪临床上不应有的表现为
A、 B、 C、 D、 E、 C十二经脉的交接规律:相为表里的阴经与阳经在四肢末端交接;同名手足阳经在头面交接;足手阴经在胸部交接。
“松涛声,海涛声,声声相应。天上月,水中月,月月齐明”赞美的是四川著名的天气景观()。
李大爷今年78岁,是革命伤残军人,没有子女,一直以来都是老伴照顾他的生活。老伴的心脏病很严重,随着年龄的增长,经常会犯病,而每次犯病后,李大爷不但要自己料理生活,还要照顾生病的老伴,这对于残疾的李大爷来说是一项挑战。李大爷为了不给社区添麻烦,也没有向社区寻
享受春雨①也许是刚经历了冬天太多的郁闷和压抑,也许是寒风、残雪在记忆的底片上留下太多的沧桑与悲凉,万物掐灭生命的色彩与声音,孤独地萧条着沉默着。一夜微风,唤醒早春三月的晨曦,也吹来了北方第一场春雨。山川、河流、乡村、房屋、树林、花草、庄稼、庄稼人
党的政治路线要紧紧围绕党的建设来制定。()
[*]
以下关于IPv6的论述中,正确的是___________。
Self-Reliance,byRalphWaldoEmerson,hasinfluencedthewayIviewtheworldandmyself.Thisworkhashadaprofoundeffecto
最新回复
(
0
)