首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3. ① 证明α,Aα,A2α线性无关. ② 设P=(α,Aα,A2α),求P-1AP.
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3. ① 证明α,Aα,A2α线性无关. ② 设P=(α,Aα,A2α),求P-1AP.
admin
2020-06-11
60
问题
设A是3阶矩阵,α
1
,α
2
,α
3
都是3维非零列向量,满足Aα
i
=iα
i
,(i=1,2,3).记α=α
1
+α
2
+α
3
.
① 证明α,Aα,A2α线性无关.
② 设P=(α,Aα,A
2
α),求P
-1
AP.
选项
答案
条件说明α
1
,α
2
,α
3
都是A的特征向量,特征值依次为1,2,3,因此α
1
,α
2
,α
3
线性无关. ① α=α
1
+α
2
+α
3
,Aα=α
1
+2α
2
+3α
3
,A
2
α=α
1
+4α
2
+9α
3
,用矩阵分解,矩阵P=(α,Aα,A
2
α)=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
)[*][*]的行列式为2,因此是可逆矩阵.于是r(α,Aα,A2α)=r(P)=r(α
1
,α
2
,α
3
)=3,α,Aα,A
2
α线性无关.② 记P
一1
AP=B,则AP=PB,即(Aα,A
2
α,A
3
α)=(α,Aα,A
2
α)B.于是B是向量组Aα,A
2
α,A
3
α对α,Aα,A
2
α的表示矩阵.显然其第1,2两列分别为(0,1,0)
T
和(0,0,1)
T
.第3列是A
3
α对α,A
3
α,A
2
α的表示系数,设为c
1
,c
2
,c
3
,则P(c
1
,c
2
,c
3
)
T
=A
3
α, 注意A
3
α=α
1
+8α
2
+27α
3
,于是[*] 因为(α
1
,α
2
,α
3
)是可逆矩阵,所以有[*]用初等变换法求得c
1
=6,c
2
=一1 1,c
3
=6,于是[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/J184777K
0
考研数学二
相关试题推荐
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求矩阵A的特征值;
求f(x)=的x3的系数.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为.试求y=f(x)所满足的微分方程,并求该方程满足条件的解.
(1)用x=et化简微分方程
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3,线性无关.
随机试题
在绩效评价中,评价者对评价对象的看法往往受到评价对象所属群体的影响,这种现象是()。
在PowerPoint中,如何调整一张PPT里多个动画的播放顺序?
治疗肺炎时,可对抗非典型病原体的是
寄生虫病流行的基本环节是
可用表干法测试其马歇尔试件毛体积密度的沥青混合料类型有()。
监理单位在设计阶段的进度控制中,不正确的说法是( )。
某大型石油化工生产企业,原油加工能力1500万m3/年。厂区外设有原油储罐区。在厂区内设有成品油和液化石油气储罐区,油品通过输油管道、铁路及公路运输,并将生产区、辅助生产区、储存区和生活区分开设置,厂区内外设置了环形消防车道、消防水源、消火栓给水系统、泡沫
丙找甲借自行车,甲的自行车与乙的很相像,均放于楼下车棚。丙错认乙车为甲车,遂把乙车骑走。甲告知丙骑错车,丙未理睬。某日,丙骑车购物,将车放在商店楼下,因墙体倒塌将车砸坏。下列表述正确的有()。
在确诊被保险人患有特种疾病后,保险人立即一次性支付保险金额。这种给付方式更多地应用于()。
教师职业道德形成和发展的社会条件是()
最新回复
(
0
)