首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)<0.证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)<0.证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ).
admin
2016-09-30
78
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)
<0.证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ).
选项
答案
不妨设f(a)>0,f(b)>0,[*]<0,令(P(x)=e
一x
f(x),则 φ’(x)=e
一x
[f’(x)一f(x)]. 因为φ(a)>0,[*]<0,φ(b)>0,所以存在ξ
1
∈[*],ξ
2
∈[*], 使得φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’(ξ)=0, 即e
一ξ
[f’(ξ)一f(ξ)]=0,因为e
一ξ
≠0,所以f’(ξ)=f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/J8T4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
证明[*]
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
设证明:f(x,y)在点(0,0)处连续且可偏导,并求出fx(0,0)和fy(00)的值.
随机试题
甲公司为境内上市公司,2×21年,甲公司发生的企业合并及相关交易或事项如下:(1)2×21年2月20日,甲公司召开董事会,审议通过了以定向增发普通股股票,并辅以支付银行存款作为支付对价,购买乙公司80%股权的议案。2×21年3月10日,甲公司、乙公司及其控
患者遍身浮肿而光亮,伴胸腹痞闷,烦热口渴,尿短赤,便干结,苔黄腻,脉沉数,宜选用何方
全身性水肿包括
一男性患者一个月前感到疲劳、食欲减少、发烧咳嗽、咳痰带血丝,取咳痰行抗酸染色,镜下见到红色细长弯曲、分枝的杆菌,试问该细菌是何种细菌
通过为劳动力供求双方提供一个接触、谈判和交易的机制,并以一定的工资率将劳动者配置于一定工作岗位之上的是()。[2008年真题]
从目的上看,学生终结性评价属于__________。
(2016·四川)学校上课铃响后,教师根据事先准备好的教案内容给学生上课。在此情景中,下列属于教育法律关系的主体和客体的是()
我国公民甲在德国旅游时,盗窃了我国公民乙一部价值1万元的照相机。对甲的行为适用我国刑法的依据是()。(2012年单选2)
设f(x)在[0,1]上连续,且f(x)=,则f(x)=__________.
Theincreaseininternationaltradehasresultedinademandforemployeeswiththeabilitytocommunicateinaforeignlanguage
最新回复
(
0
)