首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
admin
2018-02-07
43
问题
设向量组(I):b
1
,…,b
r
能由向量组(Ⅱ):a
1
,…,a
s
线性表示为(b
1
,…,b
r
)=(a
1
,…,a
s
)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
选项
答案
必要性: 令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组(I):b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r。 又因为K为r×s阶矩阵,则有r(K)≤min{r,s}≤r。 综上所述 r≤r(K)≤r,即r(K)=r。 充分性:已知r(K)=r,向量组(Ⅱ)线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 PA=[*], 于是有PB=PAK=[*]。 由矩阵秩的性质 r(B)=r(PB)=[*]=r(K), 即r(B)=r(K)=r,因此向量组(I)线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/JXk4777K
0
考研数学二
相关试题推荐
证明:[*]
设A,B为同阶可逆矩阵,则().
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
设f(x)在[0,1]上连续,取正值且单调减少,证明
解下列不等式:(1)x2<9(2)|x-4|<7(3)0<(x-2)2<4(4)|ax-x。|<δ(a>0,δ>0,x。为常数)
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
若f(x)是连续函数,证明
随机试题
属于精神分裂症症状标准的是()
【案例三】背景材料:某城市道路工程,基层采用石灰稳定土,面层采用水泥混凝土。在施工过程中的部分质量控制要点如下:1.对基层施工的控制要点:(1)基层土颗粒最大粒径不超过40mm。(2)基层细粒土最大粒径不大
旅行社营销的基本功能是()。
以现金形式支付给在建工程人员的工资应该在“支付给职工以及为职工支付的现金”项目中反映。()
某心理咨询师甲在向其主管心理咨询师乙汇报工作,乙问甲在工作中的体会,甲说:“我最讨厌那些来咨询的老太太,她们说个没完,真让我烦死了。”甲犯的职业错误是()。
在下列产品中,最为典型的公共产品为()。
试述商品流通与货币流通的联系。
某人动用资金24000元,按5:3的比例分别买入甲、乙两种股票,资金全部投入,第五天全部抛出,其投资的收益率可以算出.(1)甲种股票升值15%(2)乙种股票下跌10%
以下网络协议中属于数据链路层协议的是______。Ⅰ.TCPⅡ.UDPⅢ.IPⅣ.SMTP
A、Thecoursemaynotbesogoodnow.B、Prof.Paulsonhasretired.C、Thecourseisdefinitelyworthwhile.D、Thecourseisevenmo
最新回复
(
0
)