首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
admin
2016-10-20
39
问题
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x
0
∈(a,b)一定存在x
1
,x
2
∈(a,b)使得f(x
1
)>f(x
0
)>f(x
2
).
选项
答案
假设结论不正确,则存在x
0
∈(a,b)使得对任何x∈(a,b),要么f(x)≥f(x
0
)(这时f(x
0
)为极小值);要么f(x)≤f(x
0
)(这时f(x
0
)为极大值).因此若结论不正确,则f(x)必在(a,b)内某点x
0
处取得极值.由于f(x)在(a,b)内处处可导,由费马定理可知f’(x
0
)=0,但是对一切x∈(a,b)有f’(x)≠0,这就产生了矛盾.因此结论正确.
解析
f(x
1
)>f(x
0
)>f(x
2
)的含义是既有函数值小于f(x
0
)的点又有函数值大于f(x
0
)的点.若这个结论不正确,则在(a,b)内的函数值要么处处不小于f(x
0
),要么处处不大于f(x
0
),这时f(x
0
)就是极值.由费马定理得出f’(x
0
)=0,此与条件矛盾.
转载请注明原文地址:https://kaotiyun.com/show/JcT4777K
0
考研数学三
相关试题推荐
[*]
[*]
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
试求下列微分方程在指定形式下的解:(1)y〞+3yˊ+2y=0,形如y=erx的解;(2)x2y〞+6xyˊ+4y=0,形如y=xλ的解.
化下列方程为齐次型方程,并求出通解:(1)(2y-x-5)dx-(2x-y+4)dy=0;(2)(2x-5y+3)dx-(2x+4y-6)dy=0;(3)(x+y)dx+(3x+3y-4)dy=0;(4)(y-x+1)dx-(y+x+5)dy=0.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
微分方程2x2y’=(x+y)2满足定解条件y(1)=1的特解是__________.
随机试题
斜刺的角度应为
女性,10岁,诊断为重症心肌炎,心脏听诊可能出现的特征性体征是
肾挫伤的急诊处理是
A.50ml中50~80/μgB.50ml中0.1~0.5mgC.50ml中10~50μgD.27ml中10~20μgE.2μg
案例三发包人与承包人签订某重力坝第Ⅱ标段混凝土浇筑工程施工合同。合同有如下约定:(1)合同中混凝土工程量为20万m3,单价为300元/m3,合同工期10个月。(2)工程开工前,按合同价的10%支付工程预付款,自开工后的第1个月
在计件工资制中,()规定着单位生产时间内完成合格产品数量的标准尺度。
以下案件类型中,2010年收案数占当年婚姻家庭类案件总收案数比重比上年有所提升的是()。
区分事物发展过程中量变和质变的根本标志是
A、 B、 C、 D、 A
Accordingtothefirsttwoparagraphs,theauthorthinksthatWhatisStephenSchneider’sideaofpreventingglobalwarming?
最新回复
(
0
)