首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
admin
2016-10-20
64
问题
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x
0
∈(a,b)一定存在x
1
,x
2
∈(a,b)使得f(x
1
)>f(x
0
)>f(x
2
).
选项
答案
假设结论不正确,则存在x
0
∈(a,b)使得对任何x∈(a,b),要么f(x)≥f(x
0
)(这时f(x
0
)为极小值);要么f(x)≤f(x
0
)(这时f(x
0
)为极大值).因此若结论不正确,则f(x)必在(a,b)内某点x
0
处取得极值.由于f(x)在(a,b)内处处可导,由费马定理可知f’(x
0
)=0,但是对一切x∈(a,b)有f’(x)≠0,这就产生了矛盾.因此结论正确.
解析
f(x
1
)>f(x
0
)>f(x
2
)的含义是既有函数值小于f(x
0
)的点又有函数值大于f(x
0
)的点.若这个结论不正确,则在(a,b)内的函数值要么处处不小于f(x
0
),要么处处不大于f(x
0
),这时f(x
0
)就是极值.由费马定理得出f’(x
0
)=0,此与条件矛盾.
转载请注明原文地址:https://kaotiyun.com/show/JcT4777K
0
考研数学三
相关试题推荐
[*]
[*]
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
求下列隐函数的指定偏导数:
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
设m,n∈Z+,证明:当x→0时,(1)o(xm)+o(xn)=o(xl),l=min{m,n};(2)o(xm)×o(xn)=o(xm+n);(3)若α是x→0时的无穷小,则αxm=o(xm);(4)o(kxn)=o(xn(k≠0).
设f(t)连续并满足f(t)=cos2t+f(s)sinsds,求f(t).
随机试题
《战国策》作为重要文献可以很好地研究()
电路由两个并联电池A与B,再与电池C串联而成,设电池A、B、C损坏的概率分别是0.2,0.2,0.3,A、B、C是否损坏相互独立,求电路发生间断的概率.
寻找根管口时,下列注意事项中不正确的是
A.1年B.3年C.5年D.7年E.10年从事生产、销售假药及劣药情节严重的企业或者其他单位,其直接负责的主管人员和其他直接责任人员不得从事药品生产、经营活动的期限是
以下哪一项不是成功的预算流程的特征?
下列关于债券组合管理免疫策略的表述,正确的是()。
D注册会计师负责对丙公司2008年度财务报表进行审计,在各业务循环的测试过程中,B注册会计师需要对以下内部控制关键点进行判断。D注册会计师为了证实丙公司2008年财务报表中所列的固定资产是否存在并了解其目前的使用状况,应当实施的最有效的程序是(
假设甲将“小姐”乙从歌厅诱出后,劫持并逼迫乙带领甲到乙居住处,洗劫财物。另将乙扣押至第二日银行开门营业时,挟持乙到银行取出存款方才罢休。则甲的行为应当如何定罪处罚?()
主张“意识第一性,物质第二性”的观点是()。
Amonkeyissittingexpectantlyinalaboratory,wearingearphonesthatkeepitsheadinanuprightfixedposition.Itshandres
最新回复
(
0
)