设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明: (1)存在ξ∈(1,2),使得 (2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f’(η)ln2.

admin2019-09-04  37

问题 设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:
(1)存在ξ∈(1,2),使得
(2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f’(η)ln2.

选项

答案(1)令h(x)=lnx,F(x)=∫1xf(t)dt,且F’(x)=f(x)≠0, 由柯西中值定理,存在ξ∈(1,2),使得 [*] (2)由[*]得f(1)=0, 由拉格朗日中值定理得f(ξ)=f(ξ)-f(1)=f’(η)(ξ-1),其中1<η<ξ, 故∫12f(t)dt=e(ξ-1)f’(η)ln2

解析
转载请注明原文地址:https://kaotiyun.com/show/JiJ4777K
0

最新回复(0)