首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明: (1)存在ξ∈(1,2),使得 (2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f’(η)ln2.
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明: (1)存在ξ∈(1,2),使得 (2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f’(η)ln2.
admin
2019-09-04
57
问题
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又
存在,证明:
(1)存在ξ∈(1,2),使得
(2)存在η∈(1,2),使得∫
1
2
f(t)dt=ξ(ξ-1)f’(η)ln2.
选项
答案
(1)令h(x)=lnx,F(x)=∫
1
x
f(t)dt,且F’(x)=f(x)≠0, 由柯西中值定理,存在ξ∈(1,2),使得 [*] (2)由[*]得f(1)=0, 由拉格朗日中值定理得f(ξ)=f(ξ)-f(1)=f’(η)(ξ-1),其中1<η<ξ, 故∫
1
2
f(t)dt=e(ξ-1)f’(η)ln2
解析
转载请注明原文地址:https://kaotiyun.com/show/JiJ4777K
0
考研数学三
相关试题推荐
(2015年)设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
(1995年)设f(u)可导,则xzx’+yzy’=______.
(2018年)曲线y=x2+2lnx在其拐点处的切线方程是______.
(2003年)设其导函数在x=0处连续,则λ的取值范围是=______.
已知试确定常数a,b,使得当x→0时,f(x)~axb.
设函数y=y(x)由参数方程
设函数f(x)在[0,1]上连续.在开区间(0,1)内大于零,并且满足(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时.图形S绕x轴旋转一周所得旋转体的体积最小.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
假设随机变量X1,X2,…,X2n独立同分布,且E(Xi)=D(Xi)=1(1≤i≤2n),如果Yn=,则当常数c=__________时,根据独立同分布中心极限定理,当n充分大时,Yn近似服从标准正态分布。
设随机变量X满足|X|≤1,且P(X=一1)=,P(X=1)=,在{一1<X<1}发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
随机试题
建设污染环境的项目,()遵守国家有关建设项目环境保护管理的规定。
下列关于股份有限公司发行股票的说法中,正确的有()。
对于被判处徒刑缓刑的罪犯,由()交所在单位或者基层组织予以考察。
抗日战争期间,中国共产党总结了前两个时期在统一战线问题上的正反两方面的经验教训,创造性地制定和执行了一整套关于抗日民族统一战线的理论、政策和策略。党制定和执行这些理论、政策和策略的基本原则是()。
根据以下资料,回答下列问题。从表中可以看出,星光商厦在2011年上半年中,销售额最多的月份是()。
【2009年福建省第96题】某公司计划购买一批灯泡,11W的普通节能灯泡耗电110度/万小时,单价20元;5W的LED灯泡耗电50度/万小时,单价110元。若两种灯泡使用寿命均为5000小时,每度电价格为0.5元。则每万小时LED灯泡的总使用成本是普通节能
n维列向量组α1,…,αn—1线性无关,且与非零向量β正交.证明:α1,…,αn—1,β线性无关.
以下程序运行后输出的结果是______。publicclassexl7{publicstaticvoidmain(Stringargs[])
Birdsdon’tgetlostontheirmigratoryflights,andthereasons______.Thebirdmentionedinthepassage______.
AsSesameStreetkicksoffits40thanniversaryseasonTuesday,withfirstladyMichelleObamaandBroadwaystarLin-ManuelMira
最新回复
(
0
)