设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.

admin2017-09-15  44

问题 设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.

选项

答案令φ(χ)=e-χ0χ(t)dt, 因为φ(0)=φ(1)=0,所以存在ξ∈(0,1),使得φ′(ξ)=0, 而φ′(χ)=e-χ[f(χ)-∫0χf(t)dt]且e-χ≠0,故f(ξ)=∫0ξf(t)dt.

解析
转载请注明原文地址:https://kaotiyun.com/show/Jsk4777K
0

最新回复(0)