首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
admin
2017-05-31
88
问题
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
选项
答案
把函数f(x)在x=0与x=1分别展开成带拉格朗日余项的一阶泰勒公式,得 f(x)=f(0)+f’(0)x+[*]f"(ξ
1
)x
2
(0<ξ
1
<x), f(x)=f(1)+f’(1)(x-1)+[*]f"(ξ
2
)(x-1)
2
(x<ξ
2
<1). 在公式中取x=[*]并利用题设可得 [*] 两式相减消去未知的函数值[*]即得f"(ξ
1
)-f"(ξ
2
)=8 =>|f"(
1
)|+|f"(
2
)|≥8. 故在
1
与
2
中至少有一个使得在该点的二阶导数的绝对值不小于4,把该点取为ξ,就有ξ∈(0,1)使 |f"(ξ)|≥4.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jut4777K
0
考研数学二
相关试题推荐
指出下列各题中的函数是否为所给微分方程的解。y"-2y’+y=0,y=x2ex
指出下列各题中的函数是否为所给微分方程的解。y"+y=0,y=3sinx-4cosx
已知连续函数f(x)满足条件f(x)=∫03xdt+e2x,求f(x).
设某工厂生产甲乙两种产品,产量分别为x件和y件,利润函数为L(x,y)=6x-x2+16y-4y2-2(万元).已知生产这两种产品时,每件产品都要消耗原料2000kg,现有该原料12000kg,问两种产品各生产多少时总利润最大?最大利润是多少?
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
设函数x=f(y)、反函数y=f-1(x)及fˊ(f-1(x)),f〞(f-1(x))都存在,且fˊ(f-1(x))≠0,求证:
求下列极限:
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
求极限
(2010年试题,9)三阶常系数线性齐次微分方程y’’’一2y’’+y’一2y=0通解为y=__________.
随机试题
休克失代偿期的主要微循环变化是()
A.促进胃排空,增强胃窦和十二指肠运动B.减少胃酸和胃蛋白酶分泌C.促进胃黏膜血流,刺激胃黏液分泌D.防止氢离子反渗,促进胃黏液分泌E.减少胃酸分泌,延缓胃排空吗丁啉能
初产妇自觉胎动,多数开始于
本案一审法院决定适用简易程序是否正确?原因是什么?如果再审法院发现原审遗漏了必须参加诉讼的当事人汇远公司,则法院应当如何处理?
下列关于鉴定人与证人的说法错误的是:()
依据设计合同的规定,对于因设计错误而造成的工程重大质量事故、损失严重的,设计人应承担的违约责任为()。
阅读下面材料,根据要求写作。成长是美丽的,它一路走着,一路抛洒着缤纷的花朵;成长是神奇的,它引领着我们,去创造一个又一个生命的奇迹;成长又是忧伤的,它意味着一次次告别的仪式,和亲人,和自己……以“成长”为话题,写一篇不少于800字的文章。
(2016·广东)学生中常见的焦虑反应是()
某件刺绣产品,需要效率相当的三名绣工8天才能完成;绣品完成50%时,一人有事提前离开,绣品由剩下的两人继续完成;绣品完成75%时,又有一人离开,绣品由最后剩下的那个人做完。那么,完成该件绣品一共用了()。
某燃气公司按以下规定收取燃气费:如果用气量不超过60立方米,按每立方米0.8元收费,如果用气量超过60立方米,则超过部分按每立方米1.2元收费。某用户8月份交的燃气费平均每立方米0.88元,则该用户8月份的燃气费是( )。
最新回复
(
0
)