首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
admin
2017-05-31
87
问题
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
选项
答案
把函数f(x)在x=0与x=1分别展开成带拉格朗日余项的一阶泰勒公式,得 f(x)=f(0)+f’(0)x+[*]f"(ξ
1
)x
2
(0<ξ
1
<x), f(x)=f(1)+f’(1)(x-1)+[*]f"(ξ
2
)(x-1)
2
(x<ξ
2
<1). 在公式中取x=[*]并利用题设可得 [*] 两式相减消去未知的函数值[*]即得f"(ξ
1
)-f"(ξ
2
)=8 =>|f"(
1
)|+|f"(
2
)|≥8. 故在
1
与
2
中至少有一个使得在该点的二阶导数的绝对值不小于4,把该点取为ξ,就有ξ∈(0,1)使 |f"(ξ)|≥4.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jut4777K
0
考研数学二
相关试题推荐
设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex求出F(x)的表达式。
设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex求F(x)所满足的一阶微分方程。
设f(x)为连续函数,证明:∫0πf(sinx)dx=π/2∫0πf(sinx)dx=π∫0π/2f(sinx)dx;证明:∫02πf(|sinx|)dx=4∫0π/2f(sinx)dx;求∫0π2xsinx/(3sin2x+4cos2x)dx.
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明:若f(x)是偶函数,则F(x)为偶函数;若f(x)单调不增,则F(x)单调不减.
设某工厂生产甲乙两种产品,产量分别为x件和y件,利润函数为L(x,y)=6x-x2+16y-4y2-2(万元).已知生产这两种产品时,每件产品都要消耗原料2000kg,现有该原料12000kg,问两种产品各生产多少时总利润最大?最大利润是多少?
求下列各极限:
求极限
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
随机试题
哪项关于纤维素渗出的描述是错误的()(1995年)
治疗中风脱证首选下列哪组腧穴:
患者男,35岁,鼻塞、流脓涕、嗅觉减退1.5年。曾两次手术。查体:体温37.2℃。鼻咽部、耳部、喉部无异常。全身检查无阳性体征。如上述检查发现双侧鼻腔充满荔枝肉样肿物,为了解鼻窦情况目前应作的辅助检查是
最适宜作桥体龈面的材料是()
由出口商签发的要求银行在一定时间内付款的汇票不可能是()
学习为了获得教师、家长或同伴的赞许和接纳,这是一种(),而把学习成就看作是赢得地位和自尊的根源,这是一种()。(2015.贵州)
法的规范作用可以概括为()。
对世界的本原问题存在着不同的哲学观点,请阅读有关材料回答问题:材料1泰勒斯认为万物由水产生,又复归于水;万物有生有灭,而水则是永恒的。——摘自逄锦聚
以下选项中,合法的是
Everyonewhohasvisitedthecityagreesthatitis______withlife.
最新回复
(
0
)