首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(14年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的
(14年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的
admin
2019-05-06
29
问题
(14年)设α
1
,α
2
,α
3
均为3维向量,则对任意常数k,l,向量组α
1
+kα
3
,α
2
+lα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
记向量组(I):α
1
+kα
3
,α
2
+lα
3
;
向量组(Ⅱ):α
1
,α
2
,α
3
.
(I)是由(Ⅱ)线性表出的,写成矩阵形式即是:
[α
1
+kα
3
,α
2
+lα
3
]=[α
1
,α
2
,α
3
]
当(Ⅱ)线性无关时,矩阵[α
1
,α
2
,α
3
]为列满秩的,由于用列满秩阵左乘矩阵后,矩阵的秩不变,而矩阵
的秩为2,所以此时上式等号左边矩阵的秩也为2,也就是该矩阵的列秩为2,从而知向量组(I)线性无关,所以,(I)线性无关是(Ⅱ)线性无关的必要条件.
但(I)线性无关不是(Ⅱ)线性无关的充分条件,例如当k=l=0时,(I)线性无关即向量组α
1
,α
2
线性无关,却不能保证(Ⅱ)线性无关.
转载请注明原文地址:https://kaotiyun.com/show/KC04777K
0
考研数学一
相关试题推荐
求.
若级数绝对收敛,试证绝对收敛,收敛.
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数.
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设总体X的概率分布为其中参数θ∈(0,1)未知,以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数a1,a2,a3,使aiNi为θ的无偏估计量,并求T的方差.
设α1,α2,…,αM,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关。证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设f(x)的一个原函数为F(x),且F(x)为方程xy’+y=ex的满足y(x)=1的解.求F(x)关于x的幂级数;
设a1n=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
设随机变量(X,Y)的联合密度函数为f(x,y)=设Z=X+Y,求Z的概率密度函数.
设α=∫05xsint/tdt,β=∫0sinx(1+t)1/tdt,则当x→0时,两个无穷小的关系是().
随机试题
分析辛弃疾《摸鱼儿》(更能消、几番风雨)一词比兴、象征手法的运用。
端粒是
乳腺MRI扫描的特点是
A.慢性萎缩性胃炎B.胃淀粉样变性C.Menetrier病D.疣状胃炎E.非感染性肉芽肿性胃炎病理表现为胃小凹延长扭曲,深处有囊样扩张,伴壁细胞和主细胞减少,胃黏膜层明显增厚的是
跟腱反射,是检查
钢结构的主要缺点之一是()。
发达国家的国债负担率警戒线为()。
行政许可是指行政机关根据公民、法人或者其他组织的申请,经依法审查,准予其从事特定活动的行为。根据上述定义,下列属于行政许可的是()。
在名称为Forml的窗体上设计一个菜单。要求在窗体上添加名为menu0,标题为“菜单命令”的主菜单,再添加两个名称分别为“menul”、“menu2”,标题分别为“不可用菜单项”、“上一菜单项可用”的子菜单,并且使程序运行时,menul子菜单不可用,men
HowShouldTeachersBeRewarded?[A]Weneverforgetourbestteachers—thosewhoinspireduswithadeeperunderstandingor
最新回复
(
0
)