首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(14年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的
(14年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的
admin
2019-05-06
27
问题
(14年)设α
1
,α
2
,α
3
均为3维向量,则对任意常数k,l,向量组α
1
+kα
3
,α
2
+lα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
记向量组(I):α
1
+kα
3
,α
2
+lα
3
;
向量组(Ⅱ):α
1
,α
2
,α
3
.
(I)是由(Ⅱ)线性表出的,写成矩阵形式即是:
[α
1
+kα
3
,α
2
+lα
3
]=[α
1
,α
2
,α
3
]
当(Ⅱ)线性无关时,矩阵[α
1
,α
2
,α
3
]为列满秩的,由于用列满秩阵左乘矩阵后,矩阵的秩不变,而矩阵
的秩为2,所以此时上式等号左边矩阵的秩也为2,也就是该矩阵的列秩为2,从而知向量组(I)线性无关,所以,(I)线性无关是(Ⅱ)线性无关的必要条件.
但(I)线性无关不是(Ⅱ)线性无关的充分条件,例如当k=l=0时,(I)线性无关即向量组α
1
,α
2
线性无关,却不能保证(Ⅱ)线性无关.
转载请注明原文地址:https://kaotiyun.com/show/KC04777K
0
考研数学一
相关试题推荐
设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.
设求实对称矩阵B,使A=B2.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点,若极径OM0,OM与曲线L所围成的曲边扇形面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=O.
设有向量组(I):α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a)T,α4=(4,4,4,4+a)T.问a取何值时,(I)线性相关?当(I)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
求的收敛域及和函数.
设X,Y为随机变量,且E(X)=1,E(Y)=2,D(X)=4,D(Y)=9,ρXY=-1/2,用切比雪夫不等式估计P{|X+Y-3|≥10}.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求矩阵A的特征值;
设a1=1,an+1+=0,证明:数列{an)收敛,并求an.
随机试题
A.溶解吸收B.包裹C.钙化D.机化结核球的形成是干酪样物质被
中等强度作业的特点是
关于无菌技术,以下操作错误的是
桁架由2根细长直杆组成,杆的截面尺寸相同,材料分别是结构钢和普通铸铁。下列桁架中,布局比较合理的是()。[2014年真题]
若D是由x=0,y=0,x2+y2=1所围成在第一象限的区域,则二重积分x2ydxdy等于()。
粉体喷射搅拌桩喷粉量偏差不应大于室内配方值的(),桩体强度不应低于设计值。
贷款“三查”是指()。
(2016年)2015年12月10日,甲公司购入乙公司股票10万股,作为交易性金融资产核算,支付价款249万元,另支付交易费用0.6万元。12月31日.该股票的公允价值为258万元,则2015年甲公司利润表中“公允价值变动收益”项目的本年金额为()万元
AreyousufferingfromRAGWEEDALLERGIES?Areyouoneofthosepeoplewhosufferfrom:
ARM公司把ARM11之后的ARM处理器以ARMCortex为特征命名,主要用于高端应用的命名为ARMCortex一【47】,主要用于实时应用的命名为ARMCortex一【48】。
最新回复
(
0
)