首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=.
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=.
admin
2018-04-15
40
问题
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
.
选项
答案
令φ(x)=(x一1)
2
f’(x),显然φ(x)在[0,1]上可导.由f(0)=f(1)=0,根据罗尔定理,存在c∈(0,1),使得f’(c)=0,再由φ(c)=φ(1)=0,根据罗尔定理,存在ξ∈(c,1)[*](0,1),使得φ’(ξ)=0,而φ’(x)=2(x—1)f’(x)+(x一1)
2
f"(x),所以2(ξ—1)f’(ξ)+(ξ一1)
2
f"(ξ)=0,整理得f"(ξ)=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/Nar4777K
0
考研数学一
相关试题推荐
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=()。
设A是三阶矩阵,α1=[1,2,-2]T,α2=[2,1,-1]T,α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,-2]T,则()。
设y=y(x)是由=________。
设f(x)在点x=a处可导,则=()。
设A是5×4矩阵,B是四阶矩阵,满足2AB=A,B*是B的伴随矩阵,若A的列向量线性无关,则秩r(B*)=()。
设a为常数,则级数
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形,记为D,求(1)D的面积A;(2)D绕直线x=1所成的旋转体的体积V。
设f(x,y)=则f(x,y)在点(0,0)处()
求幂级数的收敛区间与和函数f(x).
随机试题
ThenameWarsoftheRoseswas,infact,coinedbythegreat19thcenturynovelist______.()
女,22岁,要求美容修复前牙。查:全口牙呈不同程度浅灰色,尤以前牙明显。牙齿表面光滑无缺损最可能的诊断为A.浅龋B.氟斑牙C.四环素牙D.死髓变色牙E.釉质发育体
外感风热兼见咳嗽蛲虫病,头虱、体虱
焊炬(俗称焊枪)是气焊时用于()进行焊接的工具。
商业银行个人理财业务人员应符合的资格要求包括()。
实现抵押权的主要方式有()。
下列各项中,属于增值税混合销售行为的是()。
借景及情就是借助眼前的景物,抒发导游员的观点和思想感情,以调动旅游者的情绪,给旅游者启示和联想。()
曾经访问某位登山专家,其中一个问题是:“如果我们在半山腰,突然遇到大雨,应该怎么办?”登山专家说:“你应该向山顶走。”“为什么不往山下跑?山顶风雨不是更大吗?”我怀疑地问。“往山顶走,固然风雨可能更大,却不足以威胁你的生命。至于向山下跑,看来风雨小些,似乎
TheObamaadministrationwonavictorytodayintheircampaigntostrikedownvoterIDlaws.OnlydaysaftertheUnitedStatesD
最新回复
(
0
)