首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
admin
2018-04-15
66
问题
设向量组a
1
,a
2
,…,a
m
线性相关,且a
1
≠0,证明存在某个向量a
k
(2≤k≤m),使a
k
能由a
1
,a
2
,…,a
k-1
线性表示。
选项
答案
因为向量组a
1
,a
2
,…,a
m
线性相关,由定义知,存在不全为零的数λ
1
,λ
2
,…,λ
m
,使 λ
1
a
1
+λ
2
a
2
+…+λ
m
a
m
=0。 因λ
1
,λ
2
…,λ
m
不全为零,所以必存在k,使得λ
k
≠0,且λ
k+1
=…=λ
m
=0。 当k=1时,代入上式有λ
1
a
1
=0。又因为a
1
≠0,所以λ
1
=0,与假设矛盾,故k≠1。 当λ
k
≠0且k≥2时,有 [*] 因此向量a
k
能由a
1
,a
2
,…,a
k
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/bar4777K
0
考研数学一
相关试题推荐
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设随机变量X1,X2,X3,X4相互独立,且都服从正态分布N(0,σ2),如果二阶行列式Y=,则σ2=________。
计算线积分(y2+z2)dx+(z2+x2)dy+(x2+y2)dz,其中c是曲线x2+y2+z2=2Rx,x2+y2+z2=2ax(z>0,0<a<R),且按此方向进行,使它在球的外表面上所围区域∑在其左方。
设常数a>0,L为摆线一拱,0≤t≤2π,则I=∫Lyds=________。
设Ω={(x,y,z)|x2+y2+z2≤1},
设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积.
设二维随机变量(U,V)的概率密度为又设x与y都是离散型随机变量,其中X只取一1,0,1三个值,Y只取一1,1两个值,且E(x)=0.2,E(Y)=0.4,P(X=一1,Y=1)=P(X=1,Y=一1)=P(X=0,Y=1)=(Ⅰ)(X,Y)的概率分
设z=z(x,y)是由x2一6xy+10y2一2y2—z2+18W=0确定的函数,求z=z(x,y)的极值点和极值.
微分方程tanydx-(1+ex)sec2ydy=0满足条件y(0)=的特解为_______.
飞机以匀速ν沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2ν.求导弹运行的轨迹满足的微分方程及初始条件;
随机试题
A集团是一家在上海证券交易所挂牌上市的奶制品企业,拥有液态奶、冷饮、奶粉、酸奶和原奶五大事业部,所属企业近百个,旗下有纯牛奶、乳饮料、雪糕、冰激凌、奶粉、酸奶、奶酪等1000多个产品品种。A集团奶粉系列有十二款产品,其中“养生益族”让中老年人焕发年轻活力;
患者,男,42岁。缺失,要求固定义齿修复。口腔检查:不松,活髓,无龋损。缺隙大小正常,牙槽嵴无特殊。为该患者实施了全冠烤瓷桥修复。固定桥黏固后立即出现过敏性疼痛若该患者固定义齿戴用二年后基牙出现疼痛,最可能的原因与下述哪一项无关
根据《建筑法》,在建工程因故中止施工的,建设单位应当自中止施工之日起()内,向施工许可证颁发机关报告,并按照规定做好建筑工程的维护管理工作。
建筑产品的单件性决定了职业健康安全与环境管理的()。
下列资产项目中,属于流动资产项目的有()。
制定财务目标,要遵从的原则有()。
在以下企业组织形式中,会导致双重课税的有()。
我国四大佛教名山分别是五台山、峨眉山、武当山和九华山。()
在考生文件夹下建立一个名为TESE的文件夹。
Twosubstituteswereusedduringthebasketballgames.
最新回复
(
0
)