首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=y(x)满足xdy+(x—2y)dx=0,且y=y(x)与直线x=1及x轴所围的平面图形绕x轴旋转所得旋转体的体积最小,则y(x)=( )
设曲线y=y(x)满足xdy+(x—2y)dx=0,且y=y(x)与直线x=1及x轴所围的平面图形绕x轴旋转所得旋转体的体积最小,则y(x)=( )
admin
2019-03-11
63
问题
设曲线y=y(x)满足xdy+(x—2y)dx=0,且y=y(x)与直线x=1及x轴所围的平面图形绕x轴旋转所得旋转体的体积最小,则y(x)=( )
选项
A、
B、
C、
D、
答案
C
解析
原方程可化为
=—1,其通解为
曲线y=x+Cx
2
与直线x=1及x轴所围区域绕x轴旋转一周所得旋转体的体积为
转载请注明原文地址:https://kaotiyun.com/show/KDP4777K
0
考研数学三
相关试题推荐
设(I)函数f(x)在[0,+∞)上连续,且满足0≤f(x)≤ex一1;(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别交于点P2和P1;(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于线段P1P2之
设直线y=x将椭圆x2+3y2一6y=0分成两部分,求椭圆在该直线下方部分的面积.
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.0975(11)=2.201,
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
已知二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2.a1,a2,…,an满足什么条件时f(x1,x2,…,xn)正定?
设f(x)在[a,b]上二阶可导,且f(x)>0,使不等式f(a)(b—a)<∫abf(x)dx<(b—a)成立的条件是()
设f(x)为二阶可导的奇函数,且x<0时有f’’(x)>0,f’(x)<0,则当x>0时有().
设随机变量X的数学期望和方差分别为E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P{|X—μ|
[2010年]若则a等于().
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,若则|C|=
随机试题
律师论辩的思维方法。
原发性血小板减少陛紫癜患者,应用糖皮质激素治疗多长时间未见效,才考虑切脾()(1994年)
多毛细胞白血病特征性细胞化学染色为
A、过敏性紫癜肾炎B、IgA肾病C、急性链球菌感染后肾小球肾炎D、原发性小血管炎肾损害E、狼疮性肾炎患者,女性,13岁,3周前始出现双下肢对称性出血性皮疹,浮肿、尿少、肉眼血尿1周,伴腹痛、黑粪,肾活检病理为系膜增生性肾小
下列属于企业会计档案的有()。
甲图书肯像公司在某经营期间共销售1万册图书、2万套DVD音像制品,转让两项外观设计专利,出售一辆自己使用过的小轿车。根据《营业税暂行条例》,这些经营业务属于营业税征税范围的是()。
绩效指标分析的基本工具有()。
设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi一(i=1,2,…,n).求:Cov(Y1,Yn).
设D=求-A13-A23+2A33+A43.
Withunemploymenttidethroughouttherichworld,moreandmoreyoungpeopleareseekinginternships.Manyfirms,nervousabout
最新回复
(
0
)