首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=∫xx+2πesintsintdt,则F(x)( ).
设F(x)=∫xx+2πesintsintdt,则F(x)( ).
admin
2018-01-23
101
问题
设F(x)=∫
x
x+2π
e
sint
sintdt,则F(x)( ).
选项
A、为正常数
B、为负常数
C、为零
D、取值与x有关
答案
A
解析
由周期函数的平移性质,F(x)=∫
x
x+2π
e
sint
sintdt,再由对称区间积分性
质得F(x)=∫
0
π
(e
sint
-e
-sint
sint)dt=∫
0
π
(e
sint
-e
-sint
)sintdt,
又(e
sint
-e
-sint
)sint连续、非负、不恒为零,所以F(x)>0,选(A).
转载请注明原文地址:https://kaotiyun.com/show/qNX4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
级数x2n-1的收敛域为__________.
已知A为三阶矩阵,α1=[1,2,3]T,α2=[0,2,1]T,α3=[0,t,1]T为非齐次线性方程组AX=[0,0,1]T的三个解向量,则().
A,B,C是二阶矩阵,其中 则满足BA=CA的所有矩阵A=_________.
设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2.(1)求A的全部特征值;(2)A是否可对角化?
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是().
设矩阵A与B相似,且(1)求a,b的值;(2)求可逆矩阵P,使P-1AP=B.
已知矩阵A=(Ⅰ)求A99,(Ⅱ)设3阶矩阵B=(a1,a2,a3)满足B2=BA.记B100=(β1,β2,β3,风),将Jβ1,β2,β3分别表示为a1,a2,a3的线性组合.
设向量组I:α1,α2,…,αs,Ⅱ:β1,β2,…,βr,且向量组I可由向量组Ⅱ线性表示,下列结论正确的是()
设F(x)=esintsintdt,则F(x)()
随机试题
有关Word2010文档操作的描述,下列错误的是________。
下列选项中属于过程型激励理论的有
在血清学指标中与饮酒量关系最密切的是
瘾疹风热犯表宜用何方接触性皮炎热毒湿蕴宜用何方
《统计法》规定,国家统计标准()规定。[2015年初级真题]
工作设计是一项系统工程,需要从( )等各层面加以关注。
有嫉妒妄想的人可表现为()。
教师在课堂教学中就所学知识向学生进行提问属于()。
下列陈述中正确的是()。
假如你在某时某地目击(see/witness)了一起车祸,就此写一份报告。内容应该包括以下几个要点:1.车祸发生的时间、地点;2.你所见到的车祸情况;3.你对车祸原因的分析。注意:1.词数100词左右;
最新回复
(
0
)