首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…αn—1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…αn—1均正交的n维非零列向量。证明: α1,α2,…αn—1,ξ1线性无关。
设向量α1,α2,…αn—1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…αn—1均正交的n维非零列向量。证明: α1,α2,…αn—1,ξ1线性无关。
admin
2019-05-11
60
问题
设向量α
1
,α
2
,…α
n—1
是n—1个线性无关的n维列向量,ξ
1
,ξ
2
是与α
1
,α
2
,…α
n—1
均正交的n维非零列向量。证明:
α
1
,α
2
,…α
n—1
,ξ
1
线性无关。
选项
答案
设k
1
α
1
+k
2
α
2
+…+k
n—1
α
n—1
+k
0
ξ
1
=0,两边取转置得 k
1
α
1
T
+k
2
α
2
T
+…+k
n—1
α
n—1
T
+k
0
ξ
1
T
=0, 上式两端同时右乘ξ
1
,得 k
1
α
1
T
ξ
1
+k
2
α
2
T
ξ
1
+…+k
n—1
α
n—1
T
ξ
1
+k
0
ξ
1
T
ξ
1
=0, 注意到α
i
T
ξ
1
=0(i=1,2,…,n—1),所以k
0
ξ
1
T
ξ
1
=0。由ξ
1
≠0可得ξ
1
T
ξ
1
≠0,于是k
0
=0,从而有k
1
α
1
+k
2
α
2
+…+k
n—1
α
n—1
=0。又因为α
1
,α
2
,…,α
n—1
线性无关,所以k
1
=k
2
=…=k
n—1
=k
0
=0,故α
1
,α
2
,…,α
n—1
,ξ
1
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/KNV4777K
0
考研数学二
相关试题推荐
计算积分
求二次型f(χ1,χ2,χ3)=(χ1+χ2)2+(χ2-χ3)2+(χ3+χ1)2的秩,正负惯性指数p,q.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
若α1,α2,α3线性相关,α2,α3,α4线性无关,则().
讨论函数f(χ)=的连续性.
设A是n阶正定矩阵,证明:|E+A|>1.
设函数y=f(χ)二阶可导,f′(χ)≠0,且与χ=φ(y)互为反函数,求φ〞(y).
微分方程χ=y(lny-lnχ)的通解.
设线性无关的函数y1,y2,y3都是二阶非齐次线性微分方程y〞+py′+qy=f(χ)的解,C1、C2是任意常数,则该非齐次方程的通解是【】
(96年)设f(x)为连续函数,(1)求初值问题的解y(x),其中a是正常数;(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有
随机试题
德国美学家黑格尔的重要美学论著是()
Humanbeingsare______creatures,designedtobeonthemove.
RPI卡环采用近中颌支托的主要目的是
A、咀嚼痛B、放散性锐痛C、自发性隐痛,冷热刺激痛D、阵发性电击样痛E、张、闭口痛下述疾病最可能表现出上述一种性质的疼痛是急性根尖周炎
采用净现值法评价计算期不同的互斥方案时,确定共同计算期的方法有()。
属于地区性定价方法的有()。
关注知识与权力、意识形态关系的教育学流派是()
下列有关法与社会关系的表述何者为正确?()
下列犯罪中哪些犯罪的主体为特殊主体?()
Youshouldspendabout20minutesonQuestions1-13,whicharebasedonReadingPassage1below.CLASSIFYINGSOCIETIESAlthough
最新回复
(
0
)