设f有一阶连续的偏导数,且f(x+y,x-y)=4(x2-xy-y2),则xf’x(x,y)+yf’y(x,y)为( ).

admin2020-01-15  27

问题 设f有一阶连续的偏导数,且f(x+y,x-y)=4(x2-xy-y2),则xf’x(x,y)+yf’y(x,y)为(    ).

选项 A、2x2-8xy-2y2
B、-2x2+8xy-2y2
C、2x2-8xy+2y2
D、-2x2+8xy+2y2

答案D

解析 令x+y=u,x-y=v,则
于是由f(x+y,x-y)=4(x2-xy-y2),得f(u,v)=4uv-u2+v2
故f(x,y)=4xy-x2+y2
xf’x(x,y)+yf’y(x,y)=x(4y-2x)+y(4x+2y)=-2x2+8xy+2y2,选(D).
转载请注明原文地址:https://kaotiyun.com/show/KTA4777K
0

最新回复(0)