首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,当x>0时,f(x)>0.证明对任意自然数k,存在ξ∈(0,1),使
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,当x>0时,f(x)>0.证明对任意自然数k,存在ξ∈(0,1),使
admin
2016-01-25
79
问题
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,当x>0时,f(x)>0.证明对任意自然数k,存在ξ∈(0,1),使
选项
答案
令F(x)=f(x)[f(1-x)]
k
,则 F(1)=f(1)[f(0)]
k
=0, F(0)=f(0)[f(1)]
k
=0. 由罗尔定理知,存在ξ∈(0,1)使得F′(ξ)=0,即 f′(ξ)[f(1一ξ)]
k
-k[_f(1一ξ)]
k-1
f′(1一ξ)f(ξ)=0. 整理即得 [*]
解析
将上式中的ξ改为x,并将上式改写为
f′(x)f(1一x)一kf(x)f′(1一x)=0.
令g(x)=[f(1-x)]
k
,应作辅助函数F(x)=f(x)g(x),则
F′(x)=[f(x)g(x)]′={f(x)[f(1一x)]
k
}′
=f′(x)[f(1-x)]
k
-k[f(1-x)]
k-1
f′(1一x)f(x).
转载请注明原文地址:https://kaotiyun.com/show/KdU4777K
0
考研数学三
相关试题推荐
结合材料回答问题:材料1“武汉不愧为英雄的城市,武汉人民不愧为英雄的人民,必将通过打赢这次抗击新冠肺炎疫情斗争再次被载入史册!”习近平总书记在湖北省武汉市考察新冠肺炎疫情防控工作时为英雄的武汉和武汉人民深情点赞,鼓舞着冲锋在抗疫一线的武
甲午战争后,代表民族资本主义发展要求的知识分子站在救亡图存和变法维新的前列,把向西方学习推进到了一个新的高度。然而,维新派自身具有一定的局限性,主要体现在他们
经过多年努力,我国鲜活农产品流通体系建设有了很大发展,但总体上依然薄弱。随着城镇化进程加快,一些大中城市近郊菜地和零售网点不断减少,“卖难买贵”等问题突出。要以加强产销衔接为重点,加快建设高效、畅通、安全、有序的鲜活农产品流通体系。这样可以(
当地时间1月15日,美国总统特朗普在白宫椭圆形办公室会见中共中央政治局委员、国务院副总理、中美全面经济对话中方牵头人刘鹤,双方共同出席中美第一阶段经贸协议签署仪式。 刘鹤在协议签署仪式上表示,作为国际事务中负有重要责任的两个伟大国家,正视分歧、管控分歧
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
利用高斯公式计算第二类曲面积分:
求下列曲线所围成的图形的公共部分的面积:(1)ρ=3及ρ=2(1+cosφ);(2)及ρ2=cos2φ.
随机试题
是我们自己的所为和所不为决定着我们的未来。
下列关于祛痰药的叙述中,不正确的是
患儿,3岁。不思进食,泛恶,夜间哭闹少寐,腹胀,舌苔厚腻垢浊。其诊断是
A,D-洋地黄毒糖B,D-洋地黄糖C,D-加拿大糖D,L-鼠李糖E,葡萄糖属于6-去氧糖的是
产妇王某,34岁,宫内孕39+3周。于入院前一天晚出现宫缩,清晨起来又消失。入院当天中午,孕妇又开始出现宫缩,每4—5分钟一次,每次持续约30秒。为了早接触、早开奶,提倡将新生儿放在母亲胸前进行吸吮是在出生后
典型的响应级别通常可分为()。
持续经营假设是假设企业可以长生不老,即使进入破产清算,也不应该改变会计核算方法。()
某幼儿给一堆玩具分类,第一次按大小分类,第二次按颜色分类,第三次按材料分类。该幼儿的分类是按()
已知矩阵(I)求可逆矩阵P,使(AP)T(AP)为对角矩阵;(Ⅱ)若A+kE正定,求k的取值.
Wehadamarvelousholiday.Onlythelasttwodayswereslightly________byweather.
最新回复
(
0
)