首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
admin
2018-04-15
63
问题
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.
(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
选项
答案
(1)设B和A乘积可交换,要证明B是对角矩阵,即要说明B的对角线外的元素b
ij
(i≠j)都为0. 设A的对角线元素为λ
1
,λ
2
,…,λ
n
.则AB的(i,j)位元素为λ
i
b
ij
,而BA的(i,j)位元素为λ
j
b
ij
,因为AB=BA,得 λ
i
b
ij
=λ
j
b
ij
因为λ
i
≠λ
j
,所以b
ij
=0. (2)先说明C一定是对角矩阵.由于C与对角线上元素两两不相等的n阶对角矩阵乘积可交换,由(1)的结论得出C是对角矩阵. 再说明C的对角线元素c
11
,c
22
,…,c
nn
都相等. 构造n阶矩阵A,使得其(i,j)位元素为1,i≠j,则 CA的(i,j)位元素为c
ii
,AC的(i,j)位元素为c
jj
.于是c
ii
=c
jj
.这里的i,j是任意的,从而 c
11
=c
22
=… =c
nn
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ker4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=0的充要条件是r(A)<n.
设(1)计算A2,并将A2用A和E表出;(2)设A是二阶方阵,当k>2时,证明:Ak=0的充分必要条件为A2=0.
设A=E+αβT,其中α,β均为n维列向量,αβT=3,则|A+E|=__________.
设B=(E+A)-1(E—A),则(E+B)-1=__________.
设函数f(x)在[0,x]上连续,且.试证:在(0,π)内至少存在两个不同的点ξ1和ξ2,使f(ξ1)=f(ξ2)=0.
设随机变量X的概率密度为对X独立地重复观察5次,用Y表示X大于π/3的次数,求Y2的数学期望。
设函数f(x)满足f(1)=0,f’(1)=2.求极限
设总体X的分布函数为X1,X2,…,X10为来自总体X的简单随机样本,其观察值为1,1,3,1,0,0,3,1,0,1.(Ⅰ)求总体X的分布律;(Ⅱ)求参数θ的矩估计值;(Ⅲ)求参数θ的极大似然估计值.
某人接连不断、独立地对同一目标射击,直到击中为止,以X表示命中时已射击的次数,假设他共进行了10轮这样的射击,各轮射击的次数分别为1,2,3,4,4,5,3,3,2,3,试求此人命中率p的矩估计和最大似然估计.
设f(x)在x=1处连续,且求f’(1).
随机试题
A、It’swarmandwet.B、It’scoldandwet.C、It’scoolanddry.D、It’shotanddry.A
Anewcameasasurprisethatanelderlywomandiedyesterdayafter【21】knockeddownbyamotoristwhohadmadeno【22】tobrake(刹
某患者,男,59岁,BP140/95mmHg,他的血压属于()
脂质体由类脂质双分子层膜构成,其双分子层厚度约为4nm。类脂质膜的主要成分为磷脂和胆固醇。由于结构上类似生物膜,故脂质体又被称为“人工生物膜”。其在临床应用存在的问题主要有()。
根据包衣所用材料的不同,包衣片可分为()。
工程量清单汇总表中的项目包括()
个人信用贷款期限在1年(含1年)以内的,一般采取()的还款方式。
原持有的对被投资单位具有控制的长期股权投资,因部分处置等原因导致持股比例下降,不能再对被投资单位实施控制、共同控制或重大影响的,应改按金融工具确认和计量准则进行会计处理,丧失控制之日剩余股权的公允价值与账面价值之间的差额计入当期投资收益。()
在下列设置小海龟的基本命令中,()是转向命令。
Themajorityofthepopulationintheworldmightdrinkonlytwolitersofwateraday,buttheyconsumeabout3,000litersada
最新回复
(
0
)