首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有方程yˊ+P(x)y=x2,其中P(x)=,试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
设有方程yˊ+P(x)y=x2,其中P(x)=,试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
admin
2016-09-13
113
问题
设有方程yˊ+P(x)y=x
2
,其中P(x)=
,试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
选项
答案
本题虽是基础题,但其特色在于当z的取值范围不同时,系数P(x)不同,这样所求解的方程就不一样,解的形式自然也会不一样,最后要根据解y=y(x)是连续函数,确定任意常数. 当x≤1时,方程及其初值条件为[*]求解得 y=e
-∫1dx
(∫x
2
e
∫1dx
dx+C)=e
-x
(∫x
2
e
x
dx+C)=x
2
-2x+2+Ce
-x
. 由y(0)=2得C=0,故y=x
2
-2x+2. 当x>1时,方程为yˊ+[*]y=x
2
,求解得 [*] 综上,得 [*] 又y(x)在(-∞,+∞)内连续,有f(1
-
)=f(1
+
)=f(1),即1-2+2=[*]+C,从而C=[*]. 所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/L3T4777K
0
考研数学三
相关试题推荐
[*]
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
利用定积分的几何意义求出下列积分:
按两种不同次序化二重积分为二次积分,其中D为:(1)由直线y=x及抛物线y2=4x所围成的闭区域;(2)由y=0及y=sinx(0≤x≤π)所围成的闭区域;(3)由直线y=x,x=2及双曲线y=1/x(x>0)所围成的闭区域;(4)由(x-1)2+
设水以常速(即单位时间注入的水的体积为常数)注入图2.7所示的罐中,直至将水罐注满.画出水位高度随时问变化的函数y=y(t)的图形(不要求精确图形,但应画出曲线的凹凸方向并表示出拐点).
函数f(x)=(x-x3)sinπx的可去间断点的个数为
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
假设从单位正方形区域D={(x,y)|0≤x≤1,0≤y≤1}中随机地选取一点,以该点的两个坐标x与y作为直角三角形的两条直角边,求该直角三角形的面积大于的概率p.
随机试题
在人员甄选过程中,面试者对餐饮专业毕业生问及“重大宴会座次应怎样安排”,的问题,这属于对面试者的()
某公司于2006年11月以有偿方式取得甲地块50年使用权,并于2007年11月在此地上建成建筑物乙,当时造价为1200元/m2,其经济耐用年限为50年,目前该类建筑重置价格为1500元/m2,残值率为10%,甲地块面积450m2,建筑面积为400m2,
吸人性肺脓肿最常见的部位是
关于睾酮作用的叙述,错误的是
目前我国对卷烟征收的消费税采用从价和从量复合征税的方法。
()是指通过购买某种金融产品或采取其他合法的经济措施将风险转移给其他经济主体的一种策略性选择。
教材编写在内容上要做到()
随机区组设计[南开大学2017]
Adequacy
数据库具有最小冗余度、较高的程序与数据独立性、易于扩充和什么的特点?
最新回复
(
0
)