首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求f(x)在(0,+∞)上的最小值点; (Ⅱ)判断f(x)在(0,+∞)上是否存在最大值?并说明理由.
设 (Ⅰ)求f(x)在(0,+∞)上的最小值点; (Ⅱ)判断f(x)在(0,+∞)上是否存在最大值?并说明理由.
admin
2015-12-22
53
问题
设
(Ⅰ)求f(x)在(0,+∞)上的最小值点;
(Ⅱ)判断f(x)在(0,+∞)上是否存在最大值?并说明理由.
选项
答案
为求f(x)在(0,+∞)上的最小值点,首先求出f(x)在(0,+∞)上的分段函数的形式,然后按求最小值的一般方法求出其最小值点. 解 (Ⅰ)由定积分的几何意义知, [*] (这是以原点为圆心,半径为z的圆在第一象限部分的面积). 再用分段积分法求f(x)表达式中的另一积分: 当0<x<1时, [*] 当x≥1时, [*] 于是 [*] 为求f(x)在(0,+∞)上的最小值,先求f′(x). [*] 由于 [*] 故f(x)在[*]内单调减少,而在[*]上单调增加.所以f(x)的最小值是[*],则f(x)在(0,+∞)上的最小值点是[*] (Ⅱ)由于[*] 所以f(x)在(0,+∞)上不存在最大值.
解析
转载请注明原文地址:https://kaotiyun.com/show/L5bD777K
0
考研数学二
相关试题推荐
中国古典文学艺术异彩纷呈,绚丽多姿,以其独特的意蕴与风格,成为世界文化宝库中的瑰宝。下列相关表述正确的有()。
组织的内部环境主要是指组织的(),它由组织内部所共享的价值观,规章制度、规范条例、风格特征等构成。
快递公司服务范围即服务网络能覆盖或到达的范围,是衡量快递公司竞争力的最重要因素,也是快递企业提供快递服务的物质基础,服务范围决定了快递公司快件所能到达的服务区域,对于客户来说,快递公司能提供的服务范围当然是越大越好。以下哪项如果为真,不能支持上述判断?(
减少污染排放、改善环境质量,必须加大监管执法力度,采取有效措施,严厉查处各类环境违法行为,完善区域现批、行业现批管理,是加强环境保护、改善宏观调控的重要手段。强化典型案件挂牌督办,是解决突出环境违法案件的有效形式。加快推进污染源在线监控。这是控制污染的有效
民族区域自治制度与特别行政区制度是我国宪法制度中具有自身特色的两项制度。下列对这两项制度的表达不正确的是()。
多元线性回归方程中自变量的选择有哪两种方法?()
设二次型f(χ1,χ2,χ3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QX,二次型f(χ1,χ2,χ3)=XTAX化为标准形.
设A为三阶矩阵,其特征值为λ1=λ2=1,λ32.其对应的线性无关的特征向量为α1,α2,α3,令P=(α1-α2,2α1+α2,4α3),则P-1AP=()
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:|∫01f(x)dx|≤1/21n2.
随机试题
根据《地图审核管理规定》对地图审核申请的要求,申请材料的原始图件的保管期为()年。
《锅炉大气污染物排放标准》按锅炉建成使用年限分为两个阶段,I时段是指()前建成使用的锅炉。
根据《职业病防治法》,用人单位应当采取下列职业病防治管理措施()。
根据担保法律,正确的有()。
证券公司从业人员不得有下列()行为。
在不涉及补价的非货币性资产交换中,具有商业实质情况下并且换入资产或换出资产的公允价值能够可靠计量,确定换入资产入账价值时,应考虑的换出资产账面价值与其公允价值的差额的因素。( )
随着气温上升,热带雨林遭受闪电雷击并引发大火的几率也会上升。然而,目前的监测表明,美洲热带雨林虽然更频繁地受到闪电雷击,却没有引发更多的森林大火。研究者认为这可能与近年来雨林中藤蔓植物大量增加有关。以下哪项如果为真,最能支持上述结论?
成功管理的关键不是排除企业所面临的所有问题,而是把注意力集中到目前的生命阶段所存在的问题上,这样才能使得企业成熟起来。不诚信、恶意竞争、炒作概念恰恰又是企业不成熟的重要表现。要想把注意力集中到目前的生命阶段,诚信、采用正当竞争手段、不炒作概念是必须的。根据
BeautyisbigbusinessinChina.Thecountry’scosmeticsmarketisworth$26billionayear,makingitthethird-biggestinthe
Aristotledefinedafriendas"asinglesouldwellingintwobodies".MembersofFacebookwhose"friends"reachtriplefiguresm
最新回复
(
0
)