首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X—Y|的概率密度fV(υ)。
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X—Y|的概率密度fV(υ)。
admin
2017-01-21
77
问题
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求:
(Ⅰ)U=XY的概率密度f
U
(u);
(Ⅱ)V=|X—Y|的概率密度f
V
(υ)。
选项
答案
根据X与Y相互独立且密度函数已知,因此可以用两种方法:分布函数法和公式法求出U、V的概率密度。 (Ⅰ)分布函数法。根据题设知(X,Y)联合概率密度 f(x,y)=f
X
(x)f
Y
(y)=[*] 所以U=XY的分布函数为(如图3—3—9所示) F
U
(M)=P{XY≤u}=[*] (1)当u≤0时,F
U
(u)=0;当u≥1时,F
U
(u)=1; (2)当0<u<1时, [*] (Ⅱ)公式法。设Z=X—Y=X+(—Y)。其中X与(—Y)独立,概率密度分别为 [*] 根据卷积公式得Z的概率密度 f
Z
(z)=∫
—∞
+≥
(x—y)f
—Y
(y)dy=∫
—1
0
f
X
(x—y)dy [*] V=|X—Y|=|Z|的分布函数为F
V
(v)=P{|Z|≤υ},可得 当υ≤0时,F
V
(υ)=0;当υ>0时,F
V
(υ)=P{—v≤Z≤υ}=∫
—υ
υ
(z)dz。 由此知,当0<υ<1时, F
V
(υ)=∫
—υ
—1
(z+l)dz+ ∫
0
τ
(1—z)dz=2υ一υ
2
; 当υ≥1时, F
V
(υ)=∫
—υ
—1
0dz+∫
—1
0
(z+1)出+∫
0
1
(1一z)dz+∫
1
υ
0dz=1。 综上可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/L9H4777K
0
考研数学三
相关试题推荐
设λ=2是非奇异矩阵A的一个特征值,则矩阵(1/3A2)-1有一个特征值等于
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中恰有一件是废品”;
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤20;
设函数f(x)在(-∞,+∞)内连续,且试证:若f(x)为单调不增,则F(x)单调不减.
设函数f(x),g(x)在[a,b]上连续,g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
求函数u=x2+y2+z2存约束条件z=x2+y2和x+y+z=4下的最人值与最小值.
假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求:(I)X和Y的联合概率分布;(Ⅱ)D(X+Y).
设总体X的概率密度为而X1,X2…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_________.
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X表示同时需要调整的部件数.试求X的概率分布、数学期望E(X)和方差D(X).
随机试题
市场风险的风险因素是()。
驻车制动器起什么作用?有哪几种形式?
环境空气质量二类功能区某环境空气现状监测点SO2日平均浓度监测结果如表1所示,现状评价超标率统计正确的是()。
在屋面防水工程施工技术要求中,合成高分子防水卷材采用()施工。
出售固定资产的净收益应转入“营业外收入”账户。()
尼克.胡哲1982年出生于澳大利亚墨尔本,他天生没有四肢,这种罕见的现象医学上称为海豹肢症,在尼克的成长过程中,他不仅要面对来自学习和生活的各种挑战,而且还要与自卑和孤独作斗争。他会问,为什么我与周围其他孩子不同?为什么我一出生就没有手足?随着尼克的成长,
下列关于党史上的“第一”,表述错误的是()。
构建社会主义和谐社会,关系到
最著名的国产:文字处理软件是
Theartistspentyearsonhismonumentalpainting,whichcoveredthewholeroofofthechurch,thebiggestinthecountry.
最新回复
(
0
)