首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X—Y|的概率密度fV(υ)。
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X—Y|的概率密度fV(υ)。
admin
2017-01-21
40
问题
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求:
(Ⅰ)U=XY的概率密度f
U
(u);
(Ⅱ)V=|X—Y|的概率密度f
V
(υ)。
选项
答案
根据X与Y相互独立且密度函数已知,因此可以用两种方法:分布函数法和公式法求出U、V的概率密度。 (Ⅰ)分布函数法。根据题设知(X,Y)联合概率密度 f(x,y)=f
X
(x)f
Y
(y)=[*] 所以U=XY的分布函数为(如图3—3—9所示) F
U
(M)=P{XY≤u}=[*] (1)当u≤0时,F
U
(u)=0;当u≥1时,F
U
(u)=1; (2)当0<u<1时, [*] (Ⅱ)公式法。设Z=X—Y=X+(—Y)。其中X与(—Y)独立,概率密度分别为 [*] 根据卷积公式得Z的概率密度 f
Z
(z)=∫
—∞
+≥
(x—y)f
—Y
(y)dy=∫
—1
0
f
X
(x—y)dy [*] V=|X—Y|=|Z|的分布函数为F
V
(v)=P{|Z|≤υ},可得 当υ≤0时,F
V
(υ)=0;当υ>0时,F
V
(υ)=P{—v≤Z≤υ}=∫
—υ
υ
(z)dz。 由此知,当0<υ<1时, F
V
(υ)=∫
—υ
—1
(z+l)dz+ ∫
0
τ
(1—z)dz=2υ一υ
2
; 当υ≥1时, F
V
(υ)=∫
—υ
—1
0dz+∫
—1
0
(z+1)出+∫
0
1
(1一z)dz+∫
1
υ
0dz=1。 综上可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/L9H4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).证明;
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
求函数u=x2+y2+z2存约束条件z=x2+y2和x+y+z=4下的最人值与最小值.
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:(b-a)2.
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是().
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为F(y),求随机变量u=X+Y的概率密度g(u).
已知二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2-2ax1x3-2x2x3的正、负惯性指数都是1,则a=_________.
随机试题
法律关系是由主体、客体和内容三种要素构成的,其中法律关系的内容要素是指
成年人口服阿托品一次最大量为
风湿性心脏炎最常见的心律失常是
按照世界贸易组织争端解决制度的规定和实践,有关非违反性申诉与违反性申诉的下列表述何者为正确?()
各类模板拆除的顺序和方法,应根据模板设计的规定进行。如果模板设计无规定时,应符合下列那些规定?()
松香水(一种油漆溶剂油)()
某县城管执法局认定琼林机械公司违法建房,遂决定强制拆除其违法建筑。其后,强制拆除决定被依法确认为违法。琼林机械公司要求县城管执法局予以赔偿,遭到拒绝,于是向法院提起行政赔偿诉讼。琼林机械公司除向法院提供证据证明房屋损失外,还提供了当时在场的本公司员工甲与当
某市环保部门发现一家造纸厂违反规定排放大量工业污水,作出罚款5万元的行政处罚。在以下行为中,不符合《中华人民共和国行政处罚法》规定的是()。
不可能所有的改革都会取得实效。如果上述命题是真的,那么,以下哪个命题必然是真的?
______wasopenedtomepublicasearlyasl978?______holdsthecoffinofanemperorwhichwasplacedoverawell?
最新回复
(
0
)