首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X—Y|的概率密度fV(υ)。
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X—Y|的概率密度fV(υ)。
admin
2017-01-21
63
问题
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求:
(Ⅰ)U=XY的概率密度f
U
(u);
(Ⅱ)V=|X—Y|的概率密度f
V
(υ)。
选项
答案
根据X与Y相互独立且密度函数已知,因此可以用两种方法:分布函数法和公式法求出U、V的概率密度。 (Ⅰ)分布函数法。根据题设知(X,Y)联合概率密度 f(x,y)=f
X
(x)f
Y
(y)=[*] 所以U=XY的分布函数为(如图3—3—9所示) F
U
(M)=P{XY≤u}=[*] (1)当u≤0时,F
U
(u)=0;当u≥1时,F
U
(u)=1; (2)当0<u<1时, [*] (Ⅱ)公式法。设Z=X—Y=X+(—Y)。其中X与(—Y)独立,概率密度分别为 [*] 根据卷积公式得Z的概率密度 f
Z
(z)=∫
—∞
+≥
(x—y)f
—Y
(y)dy=∫
—1
0
f
X
(x—y)dy [*] V=|X—Y|=|Z|的分布函数为F
V
(v)=P{|Z|≤υ},可得 当υ≤0时,F
V
(υ)=0;当υ>0时,F
V
(υ)=P{—v≤Z≤υ}=∫
—υ
υ
(z)dz。 由此知,当0<υ<1时, F
V
(υ)=∫
—υ
—1
(z+l)dz+ ∫
0
τ
(1—z)dz=2υ一υ
2
; 当υ≥1时, F
V
(υ)=∫
—υ
—1
0dz+∫
—1
0
(z+1)出+∫
0
1
(1一z)dz+∫
1
υ
0dz=1。 综上可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/L9H4777K
0
考研数学三
相关试题推荐
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=_________.
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:(b-a)2.
假设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损.已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为求Anβ.
设y=sinx,0≤x≤π/2,t为_______时,右图中阴影部分的面积.S1与S2之和S最小.
设B=(β1,β2,β3),其βi(i=1,2,3)为三维列向量,由于B≠0,所以至少有一个非零的列向量,不妨设β1≠0,由于AB=A(β1,β1,β3)=(Aβ1,Aβ2,Aβ3)=0,→Aβ1=0,即β1为齐次线性方程组AX=0的非零解,于是系数矩阵的
随机试题
关于自愿原则,下列说法正确的有()
关于卵巢的描述,下列哪项是正确的
抽动障碍气郁化火证的治法是
下列关于叠图法说法正确的有()。
港口工程建设项目开工应具备的条件包括()。
已知年名义利率为10%,每日计息1次,按复利计息,则年有效利率为()。
股票购回,会产生下列影响()。
文化影响着教育的______、课程内容、育人模式和历史传统。
2015年,我国快递业务量完成206.7亿件,实现业务收入2770亿元。全年同城快递业务量完成54亿件,同比增长52.3%;实现业务收入400.8亿元,同比增长50.7%。全国异地快递业务量完成148.4亿件,同比增长47.1%;实现业务收入1512.9亿
Theresourcesofthelibrarycanbehelpfulevenwhenwearedoingsomethingveryinformal,suchastryingtodeviseabetterwa
最新回复
(
0
)