首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
admin
2022-04-08
48
问题
设矩阵A是秩为2的4阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且α
1
+α
2
—α
3
=(2,0,—5,4)
T
,α
2
+2α
3
=(3,12,3,3)
T
,α
3
—2α
1
=(2,4,1,一2)
T
,则方程组Ax=b的通解x=___
选项
A、
B、
C、
D、
答案
A
解析
由于n—r(A)=4—2=2,故方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
.这样可排除(C),(D).
因为A
(α
2
+2α
3
)=b,a(α
3
—2α
1
)=一b,所以A中(1,4,1,1)
T
和B中(一2,一4,一1,2)
T
都是方程组Ax=b的解.(A)和B中均有(2,2,一2,1)
T
,因此它必是Ax=0的解.只要检验(1,一4,一6,3)
T
和(1,8,2,5)
T
哪一个是Ax=0的解就可以了.
由于3(α
1
+α
2
—α
3
)一(α
2
+2α
3
)=3(α
1
—α
3
)+2(α
2
—α
3
)是Ax=0的解,所以(3,一12,一18,9)
T
是Ax=0的解.那么(1,一4,一6,3)
T
是Ax=0的解.故应选A.
转载请注明原文地址:https://kaotiyun.com/show/LBf4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,…,αn),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
把x→0+时的无穷小量排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是()
设A为n阶可逆矩阵,且n≥2,则(A-1)*=()
A、0.B、-∞.C、+∞.D、不存在但也不是∞.D因为et=+∞,et=0,故要分别考察左、右极限.由于因此应选D.
设f(x)是(-∞,+∞)内的偶函数,并且当X∈(-∞,0)时,有f(x)=x+2,则当x∈(0,+∞)时,f(x)的表达式是[].
二次型f(x1,x2,x3)=(x1+x2)2+(2x1+3x2+x3)2一5(x2+x3)2的规范形为()
设y=f(x)由cos(xy)+lny—x=1确定,则=().
极限的充要条件是()
设a为常数,则f(x)在区间(一∞,+∞)内的零点个数情况为()
设函数f(u)连续,区域D={(x,y)|x2+y2≤2y},则等于()
随机试题
简述专利的基本含义及其特征。
公司2009年签订的购销合同应缴纳的印花税是()元。
在国际竞争演化的要素驱动阶段,企业竞争力的来源主要是本国的()。
甲股份有限公司(以下简称“甲公司”)为上市公司,其相关交易或事项如下。(1)经相关部门批准,甲公司于2015年1月1日按面值发行分期付息、到期一次还本的可转换公司债券200000万元,另支付发行费用3000万元,实际募集资金已存入银行专户。根据可转换公
简要介绍培训项目收费标准核算的方法。
出现下列的情况可能导致死锁的是()。
InOctober2002,GoldmanSachsandDeutscheBank(1)_____anewelectronicmarket(www.gs.com/econderivs)foreconomicindicest
(23)在实验阶段进行,它所依据的模块功能描述和内部细节以及测试方案应在(24)阶段完成,目的是发现编程错误。(25)所依据的模块说明书和测试方案应在(26)阶段完成,它能发现设计错误。(27)应在模拟的环境中进行强度测试的基础上进行,测试计划应在软件需求
希尔排序法属于哪一种类型的排序法______。
Easterisa【B1】______ofoverwhelmingjoy,thejoythat【B2】______life,orrather,thevictoryoflifeoverdeath.Butdoesithav
最新回复
(
0
)