首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(ξ,η)的概率密度为 试求 (1)(ξ,η)的分布函数; (2)P(η<).
设随机变量(ξ,η)的概率密度为 试求 (1)(ξ,η)的分布函数; (2)P(η<).
admin
2016-11-03
59
问题
设随机变量(ξ,η)的概率密度为
试求
(1)(ξ,η)的分布函数;
(2)P(η<
).
选项
答案
(1)将φ(x,y)定义域中的边界线段延长为直线,它们将整个平面分成5个子区域: ①D
1
:x≤0或y≤0时, F(x,y)=P(X≤x,Y≤y) =[*]0dxdy=0. ②D
2
:0<x≤1,0<y≤2时, F(x,y)=P(X≤x,Y≤y)=[*]φ(x,y)dxdy =[*]x
2
y
2
. ③D
3
:x>1,0<y≤2时, F(x,y)=P(X≤x,Y≤y)=P(0≤X<1,0<Y≤y) [*] ④D
4
:0<x≤1,y>2时, F(x,y)=P(X≤x,Y≤y)=P(0≤X≤x,0≤Y≤2) [*] ⑤D
5
:x>1,y>2时, F(x,y)=P(X≤x,Y≤y)=P(0≤X≤1,0≤Y≤2) [*] 因当0≤x≤1时,φ
ξ
(x)=[*] [*]
解析
连续型随机变量(ξ,η)的概率密度为φ(x,y).则分布函数F(x,y)=P(X≤x,Y≤y)=
φ(x,y)dxdy.若φ(x,y)的取值不分区域,则求二次积分即可求出F(x,y).若φ(x,y)分区域定义时,则先绘出φ(x,y)取非零值的区域D,再将其边界线段延长为直线,于是它们将整个平面分成若干个子区域,然后再根据P((ξ,η)∈G)=
φ(x,y)dxdy,其中G为子区域与φ(x,y)取非零值的定义域的交集,求出各个小区域上的分布函数的表达式,即得F(x,y).
转载请注明原文地址:https://kaotiyun.com/show/LHu4777K
0
考研数学一
相关试题推荐
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
证明下列函数是有界函数:
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P|x<y|=().
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
如下图,连续函数y=f(x)在区间[-3,-2]、[2,3]上图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的上、下半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是().
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
计算曲面积分I=,其中∑是曲面2x2+2y2+z2=4的外侧。
随机试题
暴盲常见于下列眼病,除了:
室温允许波动范围为±0.1~0.2℃的精密空调房间,设置在建筑物的()位置最合理。
王某与李某是邻居。2014年7月中旬,王某未将其空调室外机安装在物业指定的位置,而是安装在正对李某房门的位置,严重影响李某的生活安宁。李某遂将王某告上法庭,要求王某拆除空调室外机并赔偿精神损失。请回答下列问题:王某与李某构成的关系属于《物权法》中的
监狱领导让你组织一次“监狱开放日”活动。前来参观的市民突然增多,你怎么办?
某国有单位会计甲到银行提取本单位工资,由于银行出纳疏忽大意,多支付给甲3000元,甲回单位后发现多余款额,遂据为已有,甲的行为构成()。
某处室的第一科室和第二科室中分别有6人和3人具备硕士及以上学历.现要从这2个科室中随机选择3名具有硕士及以上学历的人参加某个会议。问:3人全部来自第一科室的概率是全部来自第二科室的多少倍?
给定资料1.2015年8月3日,中国国家发展和改革委员会发布消息称,中共中央总书记习近平提出的“一带一路”重要倡议,经一年多的酝酿后,已成为中国对外展示大国气象的“新名片”。该机构指出,在开局之年,通过各方的共同努力,“一带一路”建设以“五个一”
简述我国实行民族区域自治制度的优越性。
计算机中,负责指挥计算机各部分自动协调一致地进行工作的部件是()。
YouprobablythinkofHyundaiasthemakerofworld-class,highquality,affordablemotorcars--andyou’reright.ButHyundai
最新回复
(
0
)