首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:f为I上的凸函数的充要条件是对任何x1,x2∈I,函数φ(λ)=f(λx1+(1-λ)x2)为[0,1]上的凸函数.
证明:f为I上的凸函数的充要条件是对任何x1,x2∈I,函数φ(λ)=f(λx1+(1-λ)x2)为[0,1]上的凸函数.
admin
2022-11-23
18
问题
证明:f为I上的凸函数的充要条件是对任何x
1
,x
2
∈I,函数φ(λ)=f(λx
1
+(1-λ)x
2
)为[0,1]上的凸函数.
选项
答案
充分性 设φ(λ)为[0,1]上的凸函数,则对任何x
1
,x
2
∈I及λ∈(0,1),有 f[λx
1
+(1-λ)x
2
]=φ(λ)=φ[λ·1+(1-λ)·0]≤λφ(1)+(1-λ)φ(0) =λf(x
1
)+(1-λ)f(x
2
). 故f(x)为I上的凸函数. 必要性 设f(x)为I上的凸函数,则对任何λ
1
,λ
2
∈[0,1]及μ∈(0,1)有 φ[μλ
1
+(1-μ)λ
2
]=f[(μλ
1
+(1-μ)λ
2
)x
1
+(1-μλ
1
-(1-μ)λ
2
)x
2
] =f[μ(λ
1
x
1
+(1-λ
1
)x
2
)+(1-μ)(λ
2
x
1
+(1-λ
2
)x
2
)] ≤μf(λ
1
x
1
+(1-λ
1
)x
2
)+(1-μ)f(λ
2
x
1
+(1-λ
2
)x
2
) =μφ(λ
1
)+(1-μ)φ(λ
2
). 故φ(λ)为[0,1]上的凸函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/LJgD777K
0
考研数学三
相关试题推荐
我三个小时在这里等你了。
修改病句并说明理由。我等了一个小时他。
根据以下案情,回答下列问题。甲加盖违章建筑,并串通负责房屋征收的国家机关工作人员乙。乙利用职务上的便利帮甲违法多得了200万元征收补偿款,事后,甲将其中的5万元送给乙。乙的行为应认定为
如果各共有人对于是共同共有还是按份共有存在不同意见,且无法有证据予以证明,那么应当认定为()。
甲、乙订立合同,约定甲应于2019年8月1日交货,乙应于同年8月7日付款。7月底,甲发现乙财产状况恶化,没有付款能力,并且有确切证据予以证明,甲便中止履行。后乙在合理期限内无力履约。对此,下列表述正确的是()。
如图13—1所示,AB为半圆O的直径,C为半圆上一点,且弧AC为半圆的1/3,设扇形AOC,△COB,弓形BMC的面积分别为S1,S2,S3,则下列结论正确的是()。
若实数m,n,p满足m2+n2+p2=5,则(m-n)2+(n-p)2+(p-m)2的最大值是()。
求下列函数极限
设z=xnf,其中f可微,求证:
随机试题
Globalwarmingiscausingmorethan300,000deathsandabout$125billionineconomiclosseseachyear,accordingtoareportby
在腹前壁上第4腰椎的体表定位点是
乙为水泥厂,甲为水泥销售公司。甲、乙订立一购销合同,约定乙于6月1日前送水泥1000吨给甲;甲支付定金10万元给乙。后乙于6月2日将1000吨水泥运至甲处。甲以乙违约(迟延履行1天)为由,要求乙双倍返还定金20万元。以下说法正确的是:
下列术语中卖方不负责办理出口手续及支付相关费用的是()。
可转换公司债券享受转换特权,在转换前和转换后的形式分别为()。
根据企业所得税相关规定,企业提供劳务完工进度的确定,可以选用的方法有()。
Whodesignedthefirsthelicopter?Who【C1】______themostfamouspicturesintheworld?Whoknewmoreaboutthehumanbodythanm
关于因特网的域名系统,以下哪种说法是错误的?______。
Whichwordcantaketheplaceoftheunderlinedword"fervency"inparagraph1?Theunusuallysurprisingwaythathescoredgoa
A、TomeetCharley.B、Toworkinhisoffice.C、Togotohospital.D、Toattendameeting.DM:ThisisCharleyspeaking.Couldyou
最新回复
(
0
)