设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:

admin2016-10-20  7

问题 设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:

选项

答案即证 [*] 若能证明F(x)>0(x∈(0,1])即可.这可用单调性方法. [*] 由题设知f(x)在[0,1]单调上升,故f(x)>f(0)=0(x∈(0,1]),从而F(x)与g(x)=[*]-f2(x)同号.计算可得g’(x)=2f(x)[1-f’(x)]>0.(x∈(0,1)),结合g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,故g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 [*] 即结论成立.

解析
转载请注明原文地址:https://kaotiyun.com/show/LaT4777K
0

最新回复(0)