首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令 α=α1+α2+α3 (Ⅰ)证明:α,Aα,A2α线性无关; (Ⅱ)设P=(α,Aα,A2α),求P-1AP.
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令 α=α1+α2+α3 (Ⅰ)证明:α,Aα,A2α线性无关; (Ⅱ)设P=(α,Aα,A2α),求P-1AP.
admin
2015-05-07
70
问题
已知A是3阶矩阵,α
i
(i=1,2,3)是3维非零列向量,若Aα
i
=iα
i
(i=1,2,3),令
α=α
1
+α
2
+α
3
(Ⅰ)证明:α,Aα,A
2
α线性无关;
(Ⅱ)设P=(α,Aα,A
2
α),求P
-1
AP.
选项
答案
(Ⅰ)由Aα
1
=α
1
,Aα
2
=2α
2
,Aα
3
=3α
3
,且α
1
,α
2
,α
3
非零可知,α
1
,α
2
,α
3
是A的不同特征值的特征向量,故α
1
,α
2
,α
3
线性无关. 又Aα=α
1
+2α
2
+3α
3
,Aα=α
1
+4α
2
+9α
3
,若k
1
α+k
2
Aα+k
3
Aα=0,即 k
1
(α
1
+α
2
+α
3
)+k
2
(α
1
+2α
2
+3α
3
)+k
3
(α
1
+4α
2
+9α
3
) =0, 则 (k
1
+k
2
+k
3
)α
1
+(k
1
+2k
2
+4k
3
)α
2
+(k
1
+3k
2
+9k
3
)α
3
=0. 由α
1
,α
2
,α
3
线性无关,得齐次线性方程组 [*] 因为系数行列式为范德蒙行列式且其值不为0,所以必有k
1
=k
2
=k
3
=0,即α,Aα,A
2
α线性无关. (Ⅱ)因为A
3
α=α
1
+8α
2
+27a
3
=6α-11Aα+6A
2
α,所以 AP=A(α,Aα,A
2
α) =(Aα,A
2
α,6α-11Aα+6A
2
α)=(α,Aα,A
2
)[*] 故P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Li54777K
0
考研数学一
相关试题推荐
设A为实对称矩阵,若A2=0,则A=________.
下列矩阵中,是正定矩阵的是().
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则().
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},求x2(x2+y2)dxdy.
按两种不同积分次序化二重积分为二次积分,其中D为:(x一1)2+(y+1)2≤1所确定的闭区域.
设区域D是曲线y=sinx,x=±,y=1围成的平面区域,则=_______.
求微分方程y”一4y=e2x的通解.
用一块半径为r的圆形铁皮,剪去一圆心角为a的扇形,把余下部分围成一个圆锥.问a为何值时,圆锥的容积最大(图4—2所示)
设f(x)=x3一3x+k只有一个零点,则k的取值范围是().
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)