首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令 α=α1+α2+α3 (Ⅰ)证明:α,Aα,A2α线性无关; (Ⅱ)设P=(α,Aα,A2α),求P-1AP.
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令 α=α1+α2+α3 (Ⅰ)证明:α,Aα,A2α线性无关; (Ⅱ)设P=(α,Aα,A2α),求P-1AP.
admin
2015-05-07
87
问题
已知A是3阶矩阵,α
i
(i=1,2,3)是3维非零列向量,若Aα
i
=iα
i
(i=1,2,3),令
α=α
1
+α
2
+α
3
(Ⅰ)证明:α,Aα,A
2
α线性无关;
(Ⅱ)设P=(α,Aα,A
2
α),求P
-1
AP.
选项
答案
(Ⅰ)由Aα
1
=α
1
,Aα
2
=2α
2
,Aα
3
=3α
3
,且α
1
,α
2
,α
3
非零可知,α
1
,α
2
,α
3
是A的不同特征值的特征向量,故α
1
,α
2
,α
3
线性无关. 又Aα=α
1
+2α
2
+3α
3
,Aα=α
1
+4α
2
+9α
3
,若k
1
α+k
2
Aα+k
3
Aα=0,即 k
1
(α
1
+α
2
+α
3
)+k
2
(α
1
+2α
2
+3α
3
)+k
3
(α
1
+4α
2
+9α
3
) =0, 则 (k
1
+k
2
+k
3
)α
1
+(k
1
+2k
2
+4k
3
)α
2
+(k
1
+3k
2
+9k
3
)α
3
=0. 由α
1
,α
2
,α
3
线性无关,得齐次线性方程组 [*] 因为系数行列式为范德蒙行列式且其值不为0,所以必有k
1
=k
2
=k
3
=0,即α,Aα,A
2
α线性无关. (Ⅱ)因为A
3
α=α
1
+8α
2
+27a
3
=6α-11Aα+6A
2
α,所以 AP=A(α,Aα,A
2
α) =(Aα,A
2
α,6α-11Aα+6A
2
α)=(α,Aα,A
2
)[*] 故P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Li54777K
0
考研数学一
相关试题推荐
已知,α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是().
设三元线性方程有通解求原方程.
设函数f(x,y)连续,交换二次积分次序=_______.
设对任意x>0,曲线y=f(x)上点(x,f(x))处的切线在y轴上的截距等于,求f(x)的一般表达式.
设函数z=z(x,y)由G(x,y,z)=F(xy,yz)=0确定,其中F为可微函数,且G’z≠0,求
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
设(X,Y)服从G={(x,y)|1>y>x>0}上的均匀分布(图3-6),求:(X,Y)的密度函数;
一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.
设曲面S为旋转抛物面z=x2+y2被平面z=1所截下的部分,求曲面S在平面xOy和平面yOz上的投影区域.
设一次试验成功的概率为p,进行100次独立重复试验,当p=___________时,成功次数的标准差最大,其最大值为__________.
随机试题
下列关于哨点监测的叙述,不正确的是
A、TC细胞B、TS细胞C、Th1细胞D、Th2细胞E、巨噬细胞分泌细胞因子,促进细胞免疫应答
海关在审查进口货物完税价格时,不应成为影响成交价格因素的是()。
张某和王某订立一份买卖二手三轮车的合同,从事货运。约定张某在8月底交付,价款为5万元;王某交付给张某定金1万元,交车后15日内余款付清。合同还约定,张某晚交车一天,扣除车款100元,王某晚交款一天,应多交车款100元;一方有其他违约情形,应向对方支付违约金
支票的金额、收款人名称可由出票人授权补记,未补记前不得背书转让和提示付款。()
—Thispairofshoes________reallysmallforme.—Whynottryanother________?
毛泽东人民战争战略战术思想的核心是()。
某著名歌星开演唱会.由于衣服忘记带,动用警车回家拿衣服。被曝光后,引起社会广泛议论。谈谈你的看法。
通常把一个国家各级各类学校的总体系称为()。
下图是某工程A~E五个作业的进度计划。按照该计划,到5月31日检查时,已完成作业数、已经开始但尚未完成的作业数以及尚未开始的作业数应分别为()。
最新回复
(
0
)