首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,|f’(x)|≤1(x∈[0,1]),f(0)=f(1),证明:对任意的x∈[0,1],有|f’(x)|≤1/2。
设f(x)在[0,1]上二阶可导,|f’(x)|≤1(x∈[0,1]),f(0)=f(1),证明:对任意的x∈[0,1],有|f’(x)|≤1/2。
admin
2021-01-28
69
问题
设f(x)在[0,1]上二阶可导,|f’(x)|≤1(x∈[0,1]),f(0)=f(1),证明:对任意的x∈[0,1],有|f’(x)|≤1/2。
选项
答案
对任意的x∈[0,1],由泰勒公式得 f(0)=f(x)-f’(x)x+[f”(ζ
1
)/2!]x
2
,其中ζ
1
介于0与x之间; f(1)=f(x)+f’(x)(1-x)+[f”(ζ
2
)/2!](1-x
2
),其中ζ
2
介于x与1之间, 两式相减得0=f’(x)+1/2[f"(ζ
2
)(1-x)
2
-f"(ζ
1
)x
2
],于是 |f’(x)|≤1/2[f"(ζ
2
)(1-x)
2
-f"(ζ
1
)x
2
]。 由|f"(x)≤1(x∈[0,1])得|f’(x)|≤1/2[(1-x)
2
+x
2
], 令φ(x)=(1-x)
2
+x
2
,令φ’(x)=0,得x=1/2,因为φ(0)=φ(1)=1,φ(1/2)=1/2.所以 φ(x)=(1-x)+
2
+x
2
在[0,1]上的最大值为1,故|f’(x)|≤1/2。
解析
转载请注明原文地址:https://kaotiyun.com/show/Llx4777K
0
考研数学三
相关试题推荐
设总体X的密度函数f(x)=S2分别为取自总体X容量为n的样本的均值和方差,则=________;E(S2)=________。
设3阶矩阵A的特征值为2,一2,1,B=A2一A+E,其中E为3阶单位矩阵,则行列式|B|=________。
设f(x)=xex,则f(n)(x)在点x=________处取极小值________.
设总体X~N(0,σ2),(X1,X2,X3)为总体X的简单随机样本,为样本均值,S2为样本方差,则
某企业生产某种商品的成本函数为C=a+bQ+cQ2,收入函数为R=lQ—sQ2,其中常数a,b,C,l,s都是正常数,Q为销售量,求:(Ⅰ)当每件商品的征税额为t时,该企业获得最大利润时的销售量;(Ⅱ)当企业利润最大时,t为何值时征税收益最大.
设A,B及Ay都是n(n≥3)阶非零矩阵,且AB=0,则r(B)=().
设随机变量X~,向量组α1,α2线性无关,则Xα1-α2,﹣α1+Xα2线性相关的概率为().
下列命题正确的是().
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量U=X+Y的方差.
设总体X的概率密度为其中a,b(b>0)都是未知参数,又X1,X2,…,Xn是取自总体X的简单随机样本,试求a与b的最大似然估计量.
随机试题
A.维生素D3B.胆汁酸C.粪固醇D.类固醇激素E.脂肪酸胆固醇在肾上腺皮质转变为
下列各项,属医患关系基本内容的是()
某患者停经2个月,阴道出血20天,低热3天。出血开始似月经量,并有血块及肉样组织排出,后出血淋漓。B超提示宫腔内不均回声3cm×2cm。该患者可能诊断为
对纱布有吸附性而致药效降低的消毒剂为()。
在理财产品(计划)的存续期内,商业银行应向客户提供其所有相关资产的账单,账单提供应不少于两次,并且至少()提供一次。
某建筑安装企业为增值税一般纳税人,从事建筑安装和设备经营性租赁业务,所有建筑服务业务均由直接管理的项目部施工或分包,自当月开始投建新办公大楼。2017年10月发生与增值税相关的业务如下:(1)本地A建筑项目为营改增后的项目,采取一般计税办法,于当月竣
一般资料:求助者,男性,32岁,己婚,博士,公司职员。求助者主述:快半年了,我为工作的事项,心情不好,情绪低落,内心很乱。求助者自述:我博士毕业后选一家军队单位。进了部队的门,我才发现自己错了。我坚决要求转业,经过三年不懈的努力,我终于到了一家和我专业
棚户区改造工程在某县全面推进。但日前在社会上谣传政府将对租房户进行补贴。广大租房群众为能及时得到补贴到政府门口聚集请愿。5月8日16时,在县政府门前聚集群众最多时达到1000余人,110指挥中心立即指令巡特警大队警力到现场进行先期处置,经过民警的现场稳控,
县级以上公安机关负责人的回避,由同级人民检察院检察长决定。()
数据模型由数据结构、数据操作和【】三个要素组成。
最新回复
(
0
)