首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Ax=0有解α1=(1,2,1,3)T,α2=(1,1,一1,1)T,α3=(1,3,3,5)T,α4=(4,5,一2,6)T.其余Ax=0的解向量均可由α1,α2,α3,α4线性表出,则Ax=0的基础解系为 ( )
设齐次线性方程组Ax=0有解α1=(1,2,1,3)T,α2=(1,1,一1,1)T,α3=(1,3,3,5)T,α4=(4,5,一2,6)T.其余Ax=0的解向量均可由α1,α2,α3,α4线性表出,则Ax=0的基础解系为 ( )
admin
2019-07-10
59
问题
设齐次线性方程组Ax=0有解α
1
=(1,2,1,3)
T
,α
2
=(1,1,一1,1)
T
,α
3
=(1,3,3,5)
T
,α
4
=(4,5,一2,6)
T
.其余Ax=0的解向量均可由α
1
,α
2
,α
3
,α
4
线性表出,则Ax=0的基础解系为 ( )
选项
A、α
1
,α
2
.
B、α
1
,α
2
,α
3
.
C、α
2
,α
3
,α
4
.
D、α
1
,α
2
,α
3
,α
4
.
答案
A
解析
向量组α
1
,α
2
,α
3
,α
4
的极大线性无关组为Ax=0的基础解系.因为
(α
1
,α
2
,α
3
,α
4
)=
,
显然,α
1
,α
2
是α
1
,α
2
,α
3
,α
4
的极大无关组.故选A.
转载请注明原文地址:https://kaotiyun.com/show/JHJ4777K
0
考研数学三
相关试题推荐
设A,B为n阶矩阵,证明:当P可逆时,Q也可逆.
设有三个线性无关的特征向量.求可逆矩阵P,使得P-1AP为对角阵.
设且A~B.求a;
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设α,β为四维非零列向量,且α⊥β,令A=αβT,则A的线性无关特征向量个数为().
设f(x)在[a,b]上二阶可导,且f"(x)>0,证明:f(x)在(a,b)内为凹函数.
设X为总体,E(X)=μ,D(X)=σ2,X1,X2,…,Xn为来自总体的简单随机样本,S2=则E(S2)=__________.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
设n个n维列向量α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关|P|≠0.
随机试题
我国的根本政治制度是()。
急性肾小球肾炎可有如下几项表现,但除外
必须持有《药品经营许可证》的企业是()
下列专项规划在草案上报审批前提出环境影响报告书的是()。
拟建项目的财务评价需要在()工作初步完成和确定的基础上进行。
下列关于直流电动机的说法中,错误的是()。
下列属于政策性金融债券的发行主体的是()。
下列各项中,应列入利润表“营业收入”项目的是()。(2013年)
雁荡山是浙江著名的旅游胜地,属致密坚硬的火山______山体。
窗体上有1个名称为Textl的文本框,1个名称为Labell的标签。程序运行后,如果在文本框中输入信息,则立即在标签中显示相同的内容。以下可以实现上述操作的事件过程为()。
最新回复
(
0
)