首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
admin
2016-07-11
82
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数,试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型?
选项
答案
由已知条件知,对任意的x
1
,x
2
,…,x
n
,恒有f(x
1
,x
2
,…,x
n
)≥0,其中等号成立的充分必要条件是 [*] 根据正定的定义,只要x≠0,恒有x
T
Ax>0,则x
T
Ax是正定二次型,为此,只要方程组①仅有零解,就必有当x≠0时,x
1
+a
1
x
2
,x
2
+a
2
x
3
,…不全为0,从而f(x
1
,x
2
,…,x
n
)>0,亦即f是正定二次型. 而方程组①中只有零解的充分必要条件是系数行列式 [*] 即当a
1
a
2
…a
n
≠(一1)
n
时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/LlyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
下列的图表显示了从1975年到2000年澳大利亚青少年对于快餐消费的数额与类型的变化。通过选择比较数据和报道其主要特征,以FastFoodConsumedbyTeenagersinAustralia为题,写一篇150词左右的,能够总结图表信息的
《陌上桑》中夸夫婿一节所表现的罗敷性格特征是
阅读下面段落,按要求回答问越。为那样一些人,他们的喜悦和健康关系着我们自己的全部幸福;然后是为许多我们所不认识的人,他们的命运通过同情的纽带同我们密切结合在一起。我每天上百次地提醒自己:我的精神生活和物质生活都依靠着别人(包括生者和死者)的劳动,
那榆荫下的一潭,不是清泉,是天上虹,揉碎在浮藻间,沉淀着彩虹似的梦。这里描写的景物是什么?
阅读下面段落,按要求回答问题。杭人游湖,巳出酉归,避月如仇。是夕好名,逐队争出,多犒门军酒钱,轿夫擎燎,列俟岸上。一入舟,速舟子急放断桥,赶入胜会。以故二鼓以前,人声鼓吹,如沸如撼,如魇如呓,如聋如哑,大船小船一齐凑岸,一无所见,止见篙击篙,舟触
设A,B均为n阶矩阵,(A+B)(A—B)=A2一B2的充分必要条件是()
设n阶实对称矩阵A为正定矩阵.B为n阶实矩阵.证明:BTAB为正定矩阵的充分必要条件是|B|≠0.
行列式=__________.
设B为可逆矩阵,A是与B同阶的方阵,且满足A2+AB+B2=0,证明:A和A+B都是可逆矩阵.
设A=,求k的值使A的秩r(A)分别等于1,2,3.
随机试题
动脉血中CO2分压降低的是()。
预防管道内燃内爆的措施是什么?
边际资本成本规划的步骤包括()
男性,56岁,有长期吸烟史。近数月来人较消瘦,且有刺激性呛咳,咳白色黏痰,有时带少量血丝,经抗感染治疗无明显效果。听诊右肺中部有局限性哮鸣音。X线摄片见右肺肺门附近有单侧不规则肿块状阴影。肺癌局部扩展,引起()
下列属于催眠镇静药的是()
腹腔镜中转开腹错误的是
坏死和坏疽的主要区别是()。
平行放置两偏振片,使它们的偏振化方向成60°的夹角。如果两偏振片对光振动平行于其偏振化方向的光线均无吸收,则让自然光垂直入射后,其透射光强与入射光强之比是( )。
A、选择B、投影C、自然连接D、并A由关系R到关系S为一元运算,排除C和D。关系S是关系R的一部分,是通过选择之后的结果,因此选A。
A、Therewasabombscare.B、Therewasaterroristattack.C、Afirealarmwassetoffbymistake.D、50poundsofexplosiveswere
最新回复
(
0
)