首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
admin
2016-07-11
72
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数,试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型?
选项
答案
由已知条件知,对任意的x
1
,x
2
,…,x
n
,恒有f(x
1
,x
2
,…,x
n
)≥0,其中等号成立的充分必要条件是 [*] 根据正定的定义,只要x≠0,恒有x
T
Ax>0,则x
T
Ax是正定二次型,为此,只要方程组①仅有零解,就必有当x≠0时,x
1
+a
1
x
2
,x
2
+a
2
x
3
,…不全为0,从而f(x
1
,x
2
,…,x
n
)>0,亦即f是正定二次型. 而方程组①中只有零解的充分必要条件是系数行列式 [*] 即当a
1
a
2
…a
n
≠(一1)
n
时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/LlyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
吹嘘,自夸v.b____
Storytellingisoneofthefewhumanfeaturesthataretrulyuniversalacrosscultureandthroughallofknownhistory.Anthropo
MyhusbandChristopherwasonceafinancialplanner.Eventhoughhecouldn’tbalanceourbudget,hisclientstrustedhimcomplete
假设你的美国朋友Mike要去你的家乡旅游,请给他写一封电子邮件,告诉他:近期的天气状况;需要注意的事项;你期待与他见面。请以LiKe署名。
结庐在人境。而无车马喧。问君何能尔?心远地自偏。采菊东篱下,悠然见南山。山气日夕佳。飞乌相与还。此中有真意,欲辩已忘言。本诗的风格特征是什么?
驱而之薛,使吏召诸民当偿者悉来合券。券遍合,起,矫命以责赐诸民,因烧其券,民称万岁。这里体现出冯谖怎样的性格特征?
已知矩阵解矩阵方程AX=B
计算行列式其中a,b,c,d为常数.
设A,B均为n阶矩阵,(A+B)(A—B)=A2一B2的充分必要条件是()
设n阶实对称矩阵A为正定矩阵.B为n阶实矩阵.证明:BTAB为正定矩阵的充分必要条件是|B|≠0.
随机试题
对于下列抗结核药物的不良反应,正确的是
关于药品说明书编写要求的说法,错误的是()
关于动态管理的意义的说法不正确的一项是()。
下列各项中,属于自制原始凭证的有()。
下列各项中,()不是网络计划的检查方法。
中华文化最大的特质是其浓郁的人文精神。从________的音形义相结合的汉字,到强调对现世和人生思考的中国哲学,从五千年文明赓续不绝、________,到儒释道三家交相融合,这些文化现象无一例外都展现出以人为本、自成体系、个性鲜明的中国作风和中国气派。填入
()不是俄国剧作家契诃夫剧作《三姐妹》中的人物。
ThereportfromtheBureauofLabourStatisticswasjustasgloomyasanticipated.UnemploymentinJanuaryjumpedtoa16-yearh
数码相机在成像过程中需要进行下列处理:Ⅰ.将光信号转换为电信号Ⅱ.将影像聚焦在成像芯片(CCD或CMOS)上Ⅲ.进行模/数转换,变成数字图像Ⅳ.将数字图像存储在存储器中其处理顺序是
Whenthetreefalls,themonkeys________.
最新回复
(
0
)