首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
admin
2016-07-11
55
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数,试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型?
选项
答案
由已知条件知,对任意的x
1
,x
2
,…,x
n
,恒有f(x
1
,x
2
,…,x
n
)≥0,其中等号成立的充分必要条件是 [*] 根据正定的定义,只要x≠0,恒有x
T
Ax>0,则x
T
Ax是正定二次型,为此,只要方程组①仅有零解,就必有当x≠0时,x
1
+a
1
x
2
,x
2
+a
2
x
3
,…不全为0,从而f(x
1
,x
2
,…,x
n
)>0,亦即f是正定二次型. 而方程组①中只有零解的充分必要条件是系数行列式 [*] 即当a
1
a
2
…a
n
≠(一1)
n
时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/LlyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
Shoppingforclothesisnotthesameexperienceforamanasitisforawoman.Amangoesshopping(11)______heneedssometh
科学家们将必须提出增加世界粮食供应的新方法。
如果你一听到一种与你相左的意见就发怒,这就表明,你已经下意识地感觉到你那种看法没有充分理由。如果某个人硬要说二加二等于五,或者说冰岛位于赤道,你就只会感到怜悯而不是愤怒,除非你自己对数学和地理也是这样无知,因而他的看法竟然动摇了你的相反的见解。这段说理
阿尔贝特.爱因斯坦,20世纪最伟大的科学家,提出______等理论,他的质能方程E=mc2已由原子弹、氢弹的威力得到确证。《我的世界观》选自______。
求α=(α1,α2,α3)在基S={(1,0,0),(1,1,0),(1,1,1)}下的坐标,并将α用这个基线性表出.
设矩阵则A-1=__________.
计算行列式的值.
行列式的值为_______.
已知四阶行列式D的第一行元素依次为1,3,0,一2,第三行元素对应的代数余子式依次为8,k,一7,10,则k=_______.
设,试确定a的值使r(A)=2.
随机试题
(2010年第61题)下列关于肝肾综合征临床特点的叙述中,错误的是
若大连接体采用舌杆,此患者下牙槽突舌侧形态为垂直形时,则舌杆与黏膜的关系是
抗真菌药的构效关系是
A.更昔洛韦B.泛昔洛韦C.西多福韦D.阿德福韦E.阿昔洛韦为喷昔洛韦前体药物的是
为争取客户,证券业从业人员可以接受客户对买卖证券的种类、数量、价格等的全权委托。( )
根据票据法律制度的有关规定,下列选项中,不属于禁止背书转让汇票情形的是()。
【2015下】按照美国学者古德莱德的课程层次理论,由研究机构、学术团体和课程专家提出的课程属于()。
面向对象中的所谓数据隐藏指的(25)。
ThomasMalthuspublishedhisEssayonthePrincipleofPopulationalmost200yearsago.Eversincethen,forecastershavebeing
TheSpanishGovernmentissoworriedaboutthenumberofyoungadultsstilllivingwiththeirparentsthatithasdecidedtohel
最新回复
(
0
)