首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 证明:当0<a<b<π时,b sinb+2cosb+πb>asina+2cosa+πa.
[2006年] 证明:当0<a<b<π时,b sinb+2cosb+πb>asina+2cosa+πa.
admin
2019-04-05
73
问题
[2006年] 证明:当0<a<b<π时,b sinb+2cosb+πb>asina+2cosa+πa.
选项
答案
构造辅助函数,转化为函数不等式用单调性证之. 证一 因a=b时,待证不等式成为恒等式,故可将一常数b改为x,构造辅助函数 F(x)=xsinx+2cosx+2cosx+πx一asina一2cosa一πa, 则 F′(x)=xcosx一sinx+π, 且 F′(0)=π, F′(π)=0. 因F′(x)的符号无法确定,再求F″(x)=一xsinx<0(0<x<π).因而F′(x)在(0,π)内 单调减少.由F′(x)=0得到 F′(x)>F′(π)=0 (0<x<π). 故F(x)在(0,π)内单调增加.当0<a<x<b时,有F(b)>F(a)=0,即 b sinb+2cosb+πb>a sina+a cosa+πa. 证二 视上述不等式为单变量x在a,b处之值的不等式.令F(x)=xsinx+2cosx+πx. 下面证F(b)>F(a).为此证F(x)在0<x<π内单调增加. 因F′(x)=xcosx—sinx+π的符号无法确定,再求其二阶导数.因 F″(x)=一x sinx<0 (0<<x<π), 故F′(x)在(0,π)内单调减少.因而当0<x<π时,有F′(x)>F′(π)=0,则F(x)在(0,π)内单调增加.于是0<a<b时,有 F(b)>F(a), 即 b sinb+2cosb+πb>a sina+2cosa+πa.
解析
转载请注明原文地址:https://kaotiyun.com/show/MPV4777K
0
考研数学二
相关试题推荐
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
如果函数f(x)=在x=0处有连续导数,求λ的取值范围.
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x,令P=(x,Ax,A2X)(1)求3阶矩阵B,使A=PBP-1;(2)求|A+E|的值.
已知曲线L的方程406过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,J6『可唯一表示为α1,α2,α3,α4的线性组合?
(1)设0<x<+∞,证明存在η,0<η<1,使(2)求出(1)中η关于x的具体函数表达式η=η(x),并求出当0<x<+∞时,函数η(x)的值域.
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
设求f(x)的值域。
[2002年]设函数f(x)连续,则下列函数中必为偶函数的是().
随机试题
利华食品有限公司由甲、乙、丙、丁四个股东出资设立,注册资本10万元,公司登记机关于2006年1月10日签发公司营业执照。根据公司法的规定回答以下问题:公司不设董事会和监事会,甲为执行董事,丁为临事。如果甲的出资为5万元,丁的出资为4万元,丙和乙的出资各
99mTc标记红细胞消化道出血显像可以探测到出血率低达______的出血部位
西河柳的别名有()
居所地在甲区而户籍地在乙区的公民,被所在地为丙区的公安局收容审查。该公民对此不服而直接起诉于某法院()。
2014年第一季度,甲商业银行有关业务及收支情况如下:(1)取得一般贷款业务利息收入570万元,支付存款利息380万元。(2)取得债券转让收入2000万元,该债券的买人价位1800万元,证券公司取得佣金1.4万元。(3)取得咨询收入30万元,出纳长款
工资制度总体设计的前期工作包括()。(2007年11月二级真题)
给定资料1.“一个好媳妇,三代好子孙。”媳妇好不好,上台夸夸就知道。每年春天,X市Y区各个乡镇社区都要举行“夸媳妇比赛”。瑞霞是张庄村的年轻媳妇。五年前,刚进婆家门,她就承担起操持家务、照顾卧病在床的婆婆的重任。一日三餐按时将可口的饭菜端到全家
持续不断的“救火”,解决现场中出现的紧急问题,这意味着管理者应该开始着手考虑______了。
本当は好きな________、冷たい態度を取る。
HintsandTipstoSaveMoneyA)Spendless.Thisisnotoversimplifyingthebestwaytosavemoney!Itisessentialifyoua
最新回复
(
0
)