首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 证明:当0<a<b<π时,b sinb+2cosb+πb>asina+2cosa+πa.
[2006年] 证明:当0<a<b<π时,b sinb+2cosb+πb>asina+2cosa+πa.
admin
2019-04-05
61
问题
[2006年] 证明:当0<a<b<π时,b sinb+2cosb+πb>asina+2cosa+πa.
选项
答案
构造辅助函数,转化为函数不等式用单调性证之. 证一 因a=b时,待证不等式成为恒等式,故可将一常数b改为x,构造辅助函数 F(x)=xsinx+2cosx+2cosx+πx一asina一2cosa一πa, 则 F′(x)=xcosx一sinx+π, 且 F′(0)=π, F′(π)=0. 因F′(x)的符号无法确定,再求F″(x)=一xsinx<0(0<x<π).因而F′(x)在(0,π)内 单调减少.由F′(x)=0得到 F′(x)>F′(π)=0 (0<x<π). 故F(x)在(0,π)内单调增加.当0<a<x<b时,有F(b)>F(a)=0,即 b sinb+2cosb+πb>a sina+a cosa+πa. 证二 视上述不等式为单变量x在a,b处之值的不等式.令F(x)=xsinx+2cosx+πx. 下面证F(b)>F(a).为此证F(x)在0<x<π内单调增加. 因F′(x)=xcosx—sinx+π的符号无法确定,再求其二阶导数.因 F″(x)=一x sinx<0 (0<<x<π), 故F′(x)在(0,π)内单调减少.因而当0<x<π时,有F′(x)>F′(π)=0,则F(x)在(0,π)内单调增加.于是0<a<b时,有 F(b)>F(a), 即 b sinb+2cosb+πb>a sina+2cosa+πa.
解析
转载请注明原文地址:https://kaotiyun.com/show/MPV4777K
0
考研数学二
相关试题推荐
已知向量α=(1,k,1)T是矩阵的逆矩阵A-1的特征向量,试求常数k的值.
求极限,其中n为给定的自然数.
已知曲线L的方程406讨论L的凹凸性;
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P一1AP为对角形矩阵.
已知齐次线性方程组同解,求a,b,c的值。
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足=-z,若f(x,y)在D内没有零点,则f(x,y)在D上().
(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=_______.
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
设f(x)=(Ⅰ)证明f(x)是以π为周期的周期函数.(Ⅱ)求f(x)的值域.
随机试题
板厚大于20mm的对接焊缝进行工艺评定时,一定要做侧弯试验。()
鉴定蛋白质药品纯度时,至少应该用两种以上的方法,而且两种方法的分离机制应当不同,其结果判断才比较可靠。()
山药在补养脾胃方面有哪些特点?
治疗水肿变证,邪陷心肝常用方剂是治疗麻疹逆证,邪陷心肝常用方剂是
风机按照排气压强的不同划分,可分为()。
总资产周转率是销售收入与资产总额周转速度的比值。()
科尔伯格认为,与儿童品德发展水平直接相联系的是()。
1,3,0,6,10,9,()。
请讨论数量型货币政策工具与价格型货币政策工具各自的特点,以及各自的局限性。目前我国货币政策操作中应该如何有效地使用这两类工具?
A、Itisaboutphotographycourses.B、Itisabout"BlackandWhitephotography".C、Itisabout"IntroducingPhotography".D、Itis
最新回复
(
0
)