首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 证明:当0<a<b<π时,b sinb+2cosb+πb>asina+2cosa+πa.
[2006年] 证明:当0<a<b<π时,b sinb+2cosb+πb>asina+2cosa+πa.
admin
2019-04-05
88
问题
[2006年] 证明:当0<a<b<π时,b sinb+2cosb+πb>asina+2cosa+πa.
选项
答案
构造辅助函数,转化为函数不等式用单调性证之. 证一 因a=b时,待证不等式成为恒等式,故可将一常数b改为x,构造辅助函数 F(x)=xsinx+2cosx+2cosx+πx一asina一2cosa一πa, 则 F′(x)=xcosx一sinx+π, 且 F′(0)=π, F′(π)=0. 因F′(x)的符号无法确定,再求F″(x)=一xsinx<0(0<x<π).因而F′(x)在(0,π)内 单调减少.由F′(x)=0得到 F′(x)>F′(π)=0 (0<x<π). 故F(x)在(0,π)内单调增加.当0<a<x<b时,有F(b)>F(a)=0,即 b sinb+2cosb+πb>a sina+a cosa+πa. 证二 视上述不等式为单变量x在a,b处之值的不等式.令F(x)=xsinx+2cosx+πx. 下面证F(b)>F(a).为此证F(x)在0<x<π内单调增加. 因F′(x)=xcosx—sinx+π的符号无法确定,再求其二阶导数.因 F″(x)=一x sinx<0 (0<<x<π), 故F′(x)在(0,π)内单调减少.因而当0<x<π时,有F′(x)>F′(π)=0,则F(x)在(0,π)内单调增加.于是0<a<b时,有 F(b)>F(a), 即 b sinb+2cosb+πb>a sina+2cosa+πa.
解析
转载请注明原文地址:https://kaotiyun.com/show/MPV4777K
0
考研数学二
相关试题推荐
设f(x)在[0,+∞)连续,=A≠0,证明:∫01f(nx)dx=A.
求
证明n阶行列式
设an=,证明:{an}收敛,并求
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1)求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小
(2005年试题,一)
[2005年]设y=(1+sinx)x,则dy∣x=π=_________.
[2002年]设函数f(x)连续,则下列函数中必为偶函数的是().
随机试题
疏肝理气、和胃止痛的药不包括
人触电后3分钟内开始救治,90%有良好效果。 ()
患者,男,20岁。上感后l周出现颜面及双下肢浮肿,尿少。查血压160/100mmHg,尿蛋白(++),尿沉渣红细胞(++),血肌酐125μmol/L。2周后尿少,每日尿量400~600ml,BUN30mmol/L,血肌酐770μmol/L。若进行肾活
医疗器械最重要的质量特性是
下列病人中,禁忌使用含碘造影剂进行造影检查的是()。
若投标人的法定代表人不能亲自签署投标文件进行投标,则法定代理人需授权代理人全权代表其在投标过程和签订合同中执行一切与此相关的事项。其中授权委托书应写明的内容包括()。
我国各级预算都要采用()原则。
“内在稳定器”中的税收调节是指()。
地球距离火星最近约为5500万公里,最远则超过4亿公里,只有地球与火星夹角为70°时发射探测器才能如期抵达火星,因此,我国预计在2020年发射火星探测器,次年登陆火星,一位航天专家对此评论道:“如果不能抓住2020年这个机会,那么,下一次合适的发射时间至少
箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个.现从箱中随机地取出2个球,记X为取出的红球个数,Y为取出的白球个数.求cov(X,Y).
最新回复
(
0
)