首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设a,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:(I)秩(A)≤2;(Ⅱ)若α,β线性相关,则秩(A)<2.
[2008年] 设a,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:(I)秩(A)≤2;(Ⅱ)若α,β线性相关,则秩(A)<2.
admin
2019-05-10
47
问题
[2008年] 设a,β为三维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别是α,β的转置.证明:(I)秩(A)≤2;(Ⅱ)若α,β线性相关,则秩(A)<2.
选项
答案
注意到A为列向量与行向量相乘的形式有关,其秩的问题要用命题2.2.3.2(5)的结论,即秩(A)≤1解之. (I)解一 直接利用命题2.2.3.2(5)的结论得秩(αα
T
)≤1,秩(ββ
T
)≤1.再利用命题2.2.3.1(3),得到秩(A)=秩(αα
T
+ββ
T
)≤秩(αα
T
)+秩(ββ
T
)≤2. 解二 设α,β为三维列向量:a=[a
1
,a
2
,a
3
]
T
,β=[b
1
,b
2
,b
3
]
T
,则 αβ
T
=[*][b
1
,b
2
,b
3
]=[*] 故秩(αβ
T
)≤1.因而有秩(αα
T
)≤1,秩(ββ
T
)≤1,于是秩(A)=秩(αα
T
+ββ
T
)≤秩(αα
T
)+秩(ββ
T
)≤1+l≤2. (Ⅱ)因α,β线性相关,不妨设k≠0使β=kα,则 秩(A)=秩(αα
T
+(kα)(kα)
T
)=秩(αα
T
+k
2
αα
T
)=秩((1+k
2
)αα
T
)=秩(αα
T
)≤1<2.
解析
转载请注明原文地址:https://kaotiyun.com/show/LjV4777K
0
考研数学二
相关试题推荐
证明:当χ>0时,(χ2-1)lnx≥(χ-1)2.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
矩阵的非零特征值是a3=_______.
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E证明:B的列向量组线性无关.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________.
设A=,计算行列式|A|.
随机试题
根据我国《合伙企业法》,除合伙企业另有约定外,下列事项中,不必经全体合伙人一致同意的是【】
中枢化学感受器最敏感的直接刺激物是()
女性,42岁,因油腻饮食后出现持续性右上腹痛伴阵发性加重8小时人院。查体:体温39℃,脉搏96次/分,血压16/10.6kPa(120/80mmHg),皮肤巩膜中度黄染,白细胞15x109/L,中性80%,血小板及血红蛋白正常。为及时确诊首选的检查是
某私营企业违法经营,主管行政机关准备对其作出行为罚,具体措施可能是()。
Thecrowd________intothehallandsomehadtostandoutside.
认为所有的行为都可以通过学习而获得的心理学流派是_____________。
Oncetheexclusivedomainofexecutiveswithexpenseaccounts,mobilephonesaresettobecomeoneofthecentraltechnologieso
Americanssufferfromanoverdoseofwork.【C1】______whotheyareorwhattheydo,theyspend【C2】______timeatworkthanatanyt
PushbikePerilLowspeedbicyclecrashescanbadlyinjureorevenkillchildreniftheyfallontotheendsofthehandlebars
—Hi,Linda,doyouthinkit’spossibletohaveatalkthisafternoon?—______,butI’vegotaprettytightschedulethisafternoon.
最新回复
(
0
)