首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设a,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:(I)秩(A)≤2;(Ⅱ)若α,β线性相关,则秩(A)<2.
[2008年] 设a,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:(I)秩(A)≤2;(Ⅱ)若α,β线性相关,则秩(A)<2.
admin
2019-05-10
62
问题
[2008年] 设a,β为三维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别是α,β的转置.证明:(I)秩(A)≤2;(Ⅱ)若α,β线性相关,则秩(A)<2.
选项
答案
注意到A为列向量与行向量相乘的形式有关,其秩的问题要用命题2.2.3.2(5)的结论,即秩(A)≤1解之. (I)解一 直接利用命题2.2.3.2(5)的结论得秩(αα
T
)≤1,秩(ββ
T
)≤1.再利用命题2.2.3.1(3),得到秩(A)=秩(αα
T
+ββ
T
)≤秩(αα
T
)+秩(ββ
T
)≤2. 解二 设α,β为三维列向量:a=[a
1
,a
2
,a
3
]
T
,β=[b
1
,b
2
,b
3
]
T
,则 αβ
T
=[*][b
1
,b
2
,b
3
]=[*] 故秩(αβ
T
)≤1.因而有秩(αα
T
)≤1,秩(ββ
T
)≤1,于是秩(A)=秩(αα
T
+ββ
T
)≤秩(αα
T
)+秩(ββ
T
)≤1+l≤2. (Ⅱ)因α,β线性相关,不妨设k≠0使β=kα,则 秩(A)=秩(αα
T
+(kα)(kα)
T
)=秩(αα
T
+k
2
αα
T
)=秩((1+k
2
)αα
T
)=秩(αα
T
)≤1<2.
解析
转载请注明原文地址:https://kaotiyun.com/show/LjV4777K
0
考研数学二
相关试题推荐
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA一1)一1=()
设A,B为满足AB=O的任意两个非零矩阵,则必有()
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ∫χbf(y)dy=[∫abf(χ)dχ]2.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设矩阵A满足(2E-C-1B)AT=C-1,且求矩阵A.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设。计算行列式|A|;
随机试题
根据《建设工程施工合同(示范文本)》(GF—99—0201)规定,()应按照合同约定负责施工场地及其周边环境与生态的保护工作。
下列属于财务管理风险对策的有()。
直到完成使命,他才意识到自己得了重病。
______LiuXiangfailedtocompeteinthe2008BeijingOlympicGames,heisstillaherointheeyesofourChinesepeople.
某养鸡场散养的1000只肉仔鸡,30H龄起大批鸡精神委顿,食欲减退,双翅下垂,羽毛逆立,下痢至排大量血便,1周内死亡率在30%以上。病死鸡剖检病变主要发生在()
强心苷的药理作用不包括
2006年9月20日,中国A市甲公司作为买方与作为卖方的位于意大利B市的乙公司在北京签订购买由意大利丙公司生产的钢琴1万架的合同。后来,钢琴按时运抵甲公司,但甲公司验货后发现该批钢琴质量存在严重缺根据上述案情,请回答以下问题:陷,于是甲公司要求乙公司退还相
根据《水利水电工程等级划分及洪水标准》SL252--2000,下列永久建筑物的级别可提高一级的有()。
在数据库中,建立索引的主要作用是
A、No,that’smyaunt’s.B、No,that’smymother.C、Yes,Ilovemymother.A
最新回复
(
0
)