首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 已知函数f(x)在(0,+∞)内可导,f(x)>0,f(x)=1,且满足,求f(x).
[2002年] 已知函数f(x)在(0,+∞)内可导,f(x)>0,f(x)=1,且满足,求f(x).
admin
2019-04-05
18
问题
[2002年] 已知函数f(x)在(0,+∞)内可导,f(x)>0,
f(x)=1,且满足
,求f(x).
选项
答案
先求出[*]的表示式,由极限的唯一性建立关于f(x)的微分方程,解之即可求得f(x). 设y=[*],则lny=[*],因 [*]=x[lnyf(x)]' 故[*]=x[lnf(x)]',即[*]=e
x[lnf(x)]'
由题设和极限的唯一性得到e
x[lnf(x)]'
=e
1/x
,则x[lnf(x)]'=1/x,即[lnf(x)]'一1/x
2
.两边积分得到f(x)=Ce
-1/x
.由[*]f(x)=l得到C=1,故f(x)=e .
解析
转载请注明原文地址:https://kaotiyun.com/show/mWV4777K
0
考研数学二
相关试题推荐
求极限
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
计算定积分
设证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
设函数f(x)在x=0可导,且f(0)=1,f’(0)=3,则数列极限____________.
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)。计算。
(2009年)设A,P均为3阶矩阵,PT为P的转置矩阵.且PTAP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ为
[2011年]一容器的内侧是由图1.3.5.14中曲线绕y轴旋转一周而成的曲面,该曲面由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成.若将容器内盛满的水从容器顶点全部抽出至少需要做多少功?(长度单位为m,重力加速度为g
[2007年]设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=[1,一1,1]T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B
随机试题
患者男,23岁。因首次出现少语、少动、进食少半个月,加重3天入院。既往体健。患者在半个月前与女友分手后缓慢起病,讲话少,不主动与家人讲话,活动减少,基本不出门,有时见患者在自己房间里发呆,进食量比以前减少。近3天来,患者病情加重,不语不动不进食而被家人送入
既能祛风解表,炒炭又可止血的药物是()
小儿体格发育正常的主要鉴别指标是()
某高速公路上的一座跨越非通航河道的桥梁,洪水期有大漂浮物通过。该桥的计算水位为2.5m(大沽高程),支座高度为0.20m,试问:该桥的梁底最小高程(m),应为下列何项数值?
下列选项中,不属于流动资金贷款采用贷款人受托支付方式情形的是()。
实现反射活动的神经结构称为()。
真正的开拓型人才,不但工作时间内基本满负荷,而且业余时间内的工作效率更高,并且在紧张阶段还要占去一定的正常休息时间,而淘汰型人才不但不利用业余时间学习研究问题,而且正常工作时间也利用得少,不能产生对社会有益的价值效应。区别之大,何其明显。这段话主要说明了(
2016年,某省完成邮政通信业务总量6886.15亿元,同比增长56.6%,增幅比上年提高27.4个百分点。其中,完成邮政业务总量1879.99亿元,增长53.0%,增幅提高11.0个百分点;完成通信业务总量5006.16亿元,增长58.0%,增幅提高3
“创新”作为严格的经济学概念,特指企业以新产品、新服务、新市场、新的管理和商业模式获取利润的行为。根据上述定义,下列不属于经济学概念中的创新的是:
Itwasnotlongbeforeanotherdozenmencamecrowdingintotheroom,twoamongthem________head-to-toeinfullceremonialdress
最新回复
(
0
)